简单地说,k近邻算法采用测量不同特征值之间的距离方法进行分类。
from numpy import *
import operator
def classify0(inX,dataSet,labels,k):
dataSetSize = dataSet.shape[0]
diffMat = tile(inX,(dataSetSize,1))-dataSet
sqDiffMat = diffMat**2
sqDistances = sqDiffMat.sum(axis =1)
distances = sqDistances**0.5
sortedDistIndicies = distances.argsort()
classCount = {}
for i in range(k):
voteIlabel = labels[sortedDistIndicies[i]]
classCount[voteIlabel] = classCount.get(voteIlabel,0) +1
sortedClassCount = sorted(classCount.items(),key=operator.itemgetter(1),reverse=True)
return sortedClassCount[0][0]
classify0([1,1],group,labels,3)
def file2matrix(filename):
fr = open(filename)
array0lines = fr.readlines()
number0fLines = len(array0lines)
#得到文件行数
returnMat = zeros((number0fLines,3)) #创建返回的Numpy矩阵
classLabelVector = []
index= 0
#解析文件数据到列表
for line in array0lines:
line = line.strip()
listFromLine = line.split('\t')
returnMat[index,:] = listFromLine[0:3]
classLabelVector.append(int(listFromLine[-1]))
index+=1
return returnMat,classLabelVector
datingDataMat,datingLabels = file2matrix('datingTestSet2.txt')
def autoNorm(dataSet):
minVals = dataSet.min(0) #这个最小的那个是行和列的交叉坐标
maxVals = dataSet.max(0)
ranges = maxVals - minVals
normDataSet = zeros(shape(dataSet)) #表示按照某种结构建立一个所有值为0的二维数组
m = dataSet.shape[0]
normDataSet = dataSet - tile(minVals,(m,1))
normDataSet = normDataSet/tile(ranges,(m,1))
return normDataSet,ranges,minVals
normMat ,ranges,minVals = autoNorm(datingDataMat)
def datingClassTest():
hoRatio = 0.10
datingDataMat,datingLabels = file2matrix('datingTestSet2.txt')
normMat,ranges,minVals =autoNorm(datingDataMat)
m = normMat.shape[0]
numTestVecs = int(m*hoRatio)
errorCount = 0.0
for i in range(numTestVecs):
classifierResult = classify0(normMat[i,:],normMat[numTestVecs:m,:],datingLabels[numTestVecs:m],3)
print ("the classifier came back with: %d,the real answer is : %d",(classifierResult,datingLabels[i]))
if(classifierResult != datingLabels[i]): errorCount +=1.0
print ("the total error rate is:",(errorCount/float(numTestVecs)))
def classifyPerson():
resultList = ['not at all','in small doses','in large doses']
percentTats = float(input("percentage of time spent playing video games?"))
ffMiles = float(input("frequent flier miles earned per year ?"))
iceCream = float(input("liters of ice cream consumed per year?"))
datingDataMat,datingLabels = file2matrix('datingTestSet2.txt')
normMat,ranges,minVals = autoNorm(datingDataMat)
inArr = array([ffMiles,percentTats,iceCream])
classifierResult = classify0((inArr-minVals)/ranges,normMat,datingLabels,3)
print("You will probably like this person:",resultList[classifierResult])