String-Matching and wildcard matching algorithm

See more on github

In this article, I will show you some kinds of popular string matching algorithm and dynamic programming algorithm for wildcard matching.

String Matching algorithm

Rabin-Karp

We can view a string of k characters (digits) as a length-k decimal number. E.g., the string “31425” corresponds to the decimal number 31,425.

  • Given a pattern P [1..m], let p denote the corresponding decimal value.
  • Given a text T [1..n], let t_s denote the decimal value of the length-m substring T [(s+1)..(s+m)] for s=0,1,…,(n-m).
  • let d be the radix of num, thus d = len(set(s))
  • t_s = p iff T [(s+1)..(s+m)] = P [1..m].
  • p can be computed in O(m) time. p = P[m] + d*(P[m-1] + d*(P[m-2]+…)).
  • t_0 can similarly be computed in O(m) time.
  • Other t_1,\ldots,t_{n-m} can be computed in O(n-m) time since $t_{s+1} can be computed from ts in constant time.

Namely,
t_{s+1} = d*(t_s-d^{m-1} * T[s+1])+T[s+m+1]
However, it's no need to calculate t_{s+1} directly. We can use modulus operation to reduce the work of caculation.

We choose a small prime number. Eg 13 for radix( denoted as d) 10.
Generally, d*q should fit within one computer word.

We firstly caculate t_0 mod q.
Then, for every t_i (i>1)
assume
t_{i-1} = T[i+m-1] + d*T[i+m-2]+\ldots+d^{m-1}*T[i-1]
denote d' = d^{m-1}\ mod\ q
thus,
\begin{aligned} t_i &= (t_{i-1} - d^{m-1}*T[i-1]) * d + T[i+m]\\ &\equiv (t_{i-1} - d^{m-1}*T[i-1]) * d + T[i+m] (mod\ q)\\ &\equiv (t_{i-1}- ( d^{m-1} mod \ q) *T[i-1]) * d + T[i+m] (mod\ q)\\ &\equiv (t_{i-1}- d'*T[i-1]) * d + T[i+m] (mod\ q) \end{aligned}

So we can compare the modular value of each t_i with p's.
Only if they are the same, then we compare the origin chracters, namely
T[i],T[i+1],\ldots,T[i+m-1]
and the pattern characters.
Gernerally, this algorithm's time approximation is O(n+m), and the worst case is O((n-m+1)*m)

Problem: this is assuming p and t_s are small numbers. They may be too large to work with easily.

python implementation

#coding: utf-8
''' mbinary
#########################################################################
# File : rabin_karp.py
# Author: mbinary
# Mail: zhuheqin1@gmail.com
# Blog: https://mbinary.coding.me
# Github: https://github.com/mbinary
# Created Time: 2018-12-11  00:01
# Description: rabin-karp algorithm
#########################################################################
'''

def isPrime(x):
    for i in range(2,int(x**0.5)+1):
        if x%i==0:return False
    return True
def getPrime(x):
    '''return a prime which is bigger than x'''
    for i in range(x,2*x):
        if isPrime(i):return i
def findAll(s,p):
    '''s: string   p: pattern'''
    dic={}
    n,m = len(s),len(p)
    d=0 #radix
    for c in s:
        if c not in dic:
            dic[c]=d
            d+=1
    sm = 0
    for c in p:
        if c not in dic:return []
        sm = sm*d+dic[c]

    ret = []
    cur = 0
    for i in range(m): cur=cur*d + dic[s[i]]
    if cur==sm:ret.append(0)
    tmp = n-m
    q = getPrime(m)
    cur = cur%q
    sm = sm%q
    exp = d**(m-1) % q
    for i in range(m,n):
        cur = ((cur-dic[s[i-m]]*exp)*d+dic[s[i]]) % q
        if cur == sm and p==s[i-m+1:i+1]:
            ret.append(i-m+1)
    return ret

def randStr(n=3):
    return [randint(ord('a'),ord('z')) for i in range(n)]

if __name__ =='__main__':
    from random import randint
    s = randStr(50)
    p = randStr(1)
    print(s)
    print(p)
    print(findAll(s,p))

FSM

A FSM can be represented as (Q,q_0,A,S,C), where

  • Q is the set of all states
  • q_0 is the start state
  • A\in Q is a set of accepting states.
  • S is a finite input alphabet.
  • C is the set of transition functions: namely q_j = c(s,q_i).

Given a pattern string S, we can build a FSM for string matching.
Assume S has m chars, and there should be m+1 states. One is for the begin state, and the others are for matching state of each position of S.

Once we have built the FSM, we can run it on any input string.

KMP

Knuth-Morris-Pratt method

The idea is inspired by FSM. We can avoid computing the transition functions. Instead, we compute a prefix function P in O(m) time, which has only m entries.

Prefix funtion stores info about how the pattern matches against shifts of itself.

  • String w is a prefix of string x, if x=wy for some string y
  • String w is a suffix of string x, if x=yw for some string y
  • The k-character prefix of the pattern P [1..m] denoted by Pk.
  • Given that pattern prefix P [1..q] matches text characters T [(s+1)..(s+q)], what is the least shift s'> s such that P [1..k] = T [(s'+1)..(s'+k)] where s'+k=s+q?
  • At the new shift s', no need to compare the first k characters of P with corresponding characters of T.
    Method: For prefix p_i, find the longest proper prefix of p_i that is also a suffix of p_i.
    pre[q] = max\{k|k<q , p_k \text{\ is\ a\ suffix\ of\ } p_q\}

For example: p = ababaca,
Then,
p_5 = ababa, pre[5] = 3.
Namely p_3=aba is the longest prefix of p that is also a suffix of p_5.

Time approximation: finding prefix function take O(m), matching takes O(m+n)

python implementation

#coding: utf-8
''' mbinary
#########################################################################
# File : KMP.py
# Author: mbinary
# Mail: zhuheqin1@gmail.com
# Blog: https://mbinary.coding.me
# Github: https://github.com/mbinary
# Created Time: 2018-12-11  14:02
# Description:
#########################################################################
'''

def getPrefixFunc(s):
    '''return the list of prefix function of s'''
    length = 0
    i = 1
    n = len(s)
    ret = [0]
    while i<n:
        if s[i]==s[length]:
            length +=1
            ret.append(length)
            i+=1
        else:
            if length==0:
                ret.append(0)
                i+=1
            else:
                length = ret[length-1]
    return ret

def findAll(s,p):
    pre = getPrefixFunc(p)
    i = j  =0
    n,m = len(s),len(p)
    ret = []
    while i<n:
        if s[i]==p[j]:
            i+=1
            j+=1
            if j==m:
                ret.append(i-j)
                j=pre[j-1]
        else:
            if j==0: i+=1
            else: j = pre[j-1]
    return ret
def randStr(n=3):
    return [randint(ord('a'),ord('z')) for i in range(n)]

if __name__ =='__main__':
    from random import randint
    s = randStr(50)
    p = randStr(1)
    print(s)
    print(p)
    print(findAll(s,p))

Boyer-Moore

  • The longer the pattern is, the faster it works.
  • Starts from the end of pattern, while KMP starts from the beginning.
  • Works best for character string, while KMP works best for binary string.
  • KMP and Boyer-Moore
    • Preprocessing existing patterns.
    • Searching patterns in input strings.

Sunday

features

  • simplification of the Boyer-Moore algorithm;
  • uses only the bad-character shift;
  • easy to implement;
  • preprocessing phase in O(m+sigma) time and O(sigma) space complexity;
  • searching phase in O(mn) time complexity;
  • very fast in practice for short patterns and large alphabets.

description

The Quick Search algorithm uses only the bad-character shift table (see chapter Boyer-Moore algorithm). After an attempt where the window is positioned on the text factor y[j .. j+m-1], the length of the shift is at least equal to one. So, the character y[j+m] is necessarily involved in the next attempt, and thus can be used for the bad-character shift of the current attempt.

The bad-character shift of the present algorithm is slightly modified to take into account the last character of x as follows: for c in Sigma, qsBc[c]=min{i : 0 < i leq m and x[m-i]=c} if c occurs in x, m+1 otherwise (thanks to Darko Brljak).

The preprocessing phase is in O(m+sigma) time and O(sigma) space complexity.

During the searching phase the comparisons between pattern and text characters during each attempt can be done in any order. The searching phase has a quadratic worst case time complexity but it has a good practical behaviour.

For instance,


image.png

In this example, t0, ..., t4 = a b c a b is the current text window that is compared with the pattern. Its suffix a b has matched, but the comparison c-a causes a mismatch. The bad-character heuristics of the Boyer-Moore algorithm (a) uses the "bad" text character c to determine the shift distance. The Horspool algorithm (b) uses the rightmost character b of the current text window. The Sunday algorithm (c) uses the character directly right of the text window, namely d in this example. Since d does not occur in the pattern at all, the pattern can be shifted past this position.

python implementation

''' mbinary
#########################################################################
# File : sunday.py
# Author: mbinary
# Mail: zhuheqin1@gmail.com
# Blog: https://mbinary.coding.me
# Github: https://github.com/mbinary
# Created Time: 2018-07-11  15:26
# Description: 字符串模式匹配, sunday 算法, kmp 的改进
#               pattern matching for strings using sunday algorithm
#########################################################################
'''



def getPos(pattern):
    dic = {}
    for i,j in enumerate(pattern[::-1]):
        if j not in dic:
            dic[j]= i
    return dic
def find(s,p):
    dic = getPos(p)
    ps = pp = 0
    ns = len(s)
    np = len(p)
    while ps<ns and pp<np:
        if s[ps] == p[pp]:
            ps,pp = ps+1,pp+1
        else:
            idx = ps+ np-pp
            if idx >=ns:return -1
            ch = s[idx]
            if ch in dic:
                ps += dic[ch]+1-pp
            else:
                ps = idx+1
            pp = 0
    if pp==np:return ps-np
    else:
        return -1
def findAll(s,p):
    ns = len(s)
    np = len(p)
    i = 0
    ret = []
    while s:
        print(s,p)
        tmp = find(s,p)
        if tmp==-1: break
        ret.append(i+tmp)
        end = tmp+np
        i +=end
        s = s[end:]
    return ret



def randStr(n=3):
    return [randint(ord('a'),ord('z')) for i in range(n)]

def test(n):
    s = randStr(n)
    p = randStr(3)
    str_s = ''.join((chr(i) for i in s))
    str_p = ''.join((chr(i) for i in p))
    n1 = find(s,p)
    n2 = str_s.find(str_p) # 利用已有的 str find 算法检验
    if n1!=n2:
        print(n1,n2,str_p,str_s)
        return False
    return True
if __name__ =='__main__':
    from random import randint
    n = 1000
    suc = sum(test(n) for i in range(n))
    print('test {n} times, success {suc} times'.format(n=n,suc=suc))

WildCard matching

wild card:

  • * matches 0 or any chars
  • ? matches any single char.

Given a string s which doesn't include wild card,
and a pattern p which includes wild card,

Judge if they are matching.

Idea

Using dynamic programming.

n = length(s), m = length(p)

dp[m+1][n+1]: bool

i:n, j:m
dp[j][i] represents if s[:i+1] matches p[:j+1]

initialzation :
dp[0][0] = True, dp[0][i],dp[j][0] = False, only if p startswith '*', dp[1][0] = True.

if p[j] = '*': dp[j][i] = dp[j-1][i] or dp[j][i-1]
elif p[j] = '?': dp[j][i] = dp[j-1][i-1]
else : dp[j][i] = dp[j-1][i-1] and s[i] == p[j]

Code

def isMatch(self, s, p):
    """
    :type s: str
    :type p: str   pattern str including wildcard
    :rtype: bool
    """
    n,m = len(s),len(p)
    last =  [False]*(n+1)
    last[0] = True
    for j in range(m):
        if p[j]=='*':
            li = [last[0]]
            for i in range(n):
                li.append(last[i+1] or li[i])
            last = li
        elif p[j]=='?':
            last.pop()
            last.insert(0,False)
        else:
            li = [False]
            for i in range(n):
                li.append( last[i] and p[j]==s[i])
            last = li
    return last[-1]

Reference:

  1. Xuyun, ppt, String matching
  2. Sunday-algorithm
  3. GeeksforGeeks, KMP Algorithm
  4. Augustliang, csdn, dynamic programming for wild card matching
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,013评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,205评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,370评论 0 342
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,168评论 1 278
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,153评论 5 371
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,954评论 1 283
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,271评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,916评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,382评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,877评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,989评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,624评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,209评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,199评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,418评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,401评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,700评论 2 345

推荐阅读更多精彩内容

  • rljs by sennchi Timeline of History Part One The Cognitiv...
    sennchi阅读 7,292评论 0 10
  • 上周四,车子被追尾,只能送去维修,周日才能提回。本来很平常的事,恰巧碰上下雨天,于是一切都变得不平常起来。 首先,...
    千盐万语阅读 265评论 0 1