pandas 基础入门: 向量化方法


求某列数据的平均数(mean)

此处需要用到numpy
求test列的平均数: numpy.mean(test)
求test列的标准差: numpy.sdt(test)
求test列的中位数 : numpy.median(test)

下面有一题:求金牌数不小于1的所以国家的银牌数的平均数:
数据:

countries = ['Russian Fed.', 'Norway', 'Canada', 'United States',
                 'Netherlands', 'Germany', 'Switzerland', 'Belarus',
                 'Austria', 'France', 'Poland', 'China', 'Korea', 
                 'Sweden', 'Czech Republic', 'Slovenia', 'Japan',
                 'Finland', 'Great Britain', 'Ukraine', 'Slovakia',
                 'Italy', 'Latvia', 'Australia', 'Croatia', 'Kazakhstan']

    gold = [13, 11, 10, 9, 8, 8, 6, 5, 4, 4, 4, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0]
    silver = [11, 5, 10, 7, 7, 6, 3, 0, 8, 4, 1, 4, 3, 7, 4, 2, 4, 3, 1, 0, 0, 2, 2, 2, 1, 0]
    bronze = [9, 10, 5, 12, 9, 5, 2, 1, 5, 7, 1, 2, 2, 6, 2, 4, 3, 1, 2, 1, 0, 6, 2, 1, 0, 1]
    
    olympic_medal_counts = {'country_name':Series(countries),
                            'gold': Series(gold),
                            'silver': Series(silver),
                            'bronze': Series(bronze)}
    df = DataFrame(olympic_medal_counts)

看下数据框显示:

  bronze    country_name  gold  silver
0        9    Russian Fed.    13      11
1       10          Norway    11       5
2        5          Canada    10      10
3       12   United States     9       7
4        9     Netherlands     8       7
5        5         Germany     8       6
6        2     Switzerland     6       3
7        1         Belarus     5       0
8        5         Austria     4       8
9        7          France     4       4
10       1          Poland     4       1
11       2           China     3       4
12       2           Korea     3       3
13       6          Sweden     2       7
14       2  Czech Republic     2       4
15       4        Slovenia     2       2
16       3           Japan     1       4
17       1         Finland     1       3
18       2   Great Britain     1       1
19       1         Ukraine     1       0
20       0        Slovakia     1       0
21       6           Italy     0       2
22       2          Latvia     0       2
23       1       Australia     0       2
24       0         Croatia     0       1
25       1      Kazakhstan     0       0
  • 结题思路:

1). 获取所有金牌数大于0的国家的数据

at_least_one_gold = df[df.gold > 0]

输出结果:

    bronze    country_name  gold  silver
0        9    Russian Fed.    13      11
1       10          Norway    11       5
2        5          Canada    10      10
3       12   United States     9       7
4        9     Netherlands     8       7
5        5         Germany     8       6
6        2     Switzerland     6       3
7        1         Belarus     5       0
8        5         Austria     4       8
9        7          France     4       4
10       1          Poland     4       1
11       2           China     3       4
12       2           Korea     3       3
13       6          Sweden     2       7
14       2  Czech Republic     2       4
15       4        Slovenia     2       2
16       3           Japan     1       4
17       1         Finland     1       3
18       2   Great Britain     1       1
19       1         Ukraine     1       0
20       0        Slovakia     1       0

2). 只筛选出银牌数据:

bronze_at_least_one_gold = at_least_one_gold['bronze']

数据:

0      9
1     10
2      5
3     12
4      9
5      5
6      2
7      1
8      5
9      7
10     1
11     2
12     2
13     6
14     2
15     4
16     3
17     1
18     2
19     1
20     0

3). 求出平均数:

avg_bronze_at_least_one_gold = numpy.mean(bronze_at_least_one_gold)

结果: 4.2380952381

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,937评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,503评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,712评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,668评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,677评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,601评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,975评论 3 396
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,637评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,881评论 1 298
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,621评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,710评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,387评论 4 319
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,971评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,947评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,189评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,805评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,449评论 2 342

推荐阅读更多精彩内容