Objective-C 小记(10)__weak

本文使用的 runtime 版本为 objc4-706

__weak 修饰的指针最重要的特性是其指向的对象销毁后,会自动置为 nil,这个特性的实现完全是依靠运行时的。实现思路是非常简单的,对于下面的语句来说:

id __weak weakObj = strongObj;

便是用 strongObj 当作 key,weakObj 当作 value 存入一个表里。当 strongObj 销毁时,从表里找到所有的 __weak 引用,将其置为 nil

当然,实际的实现肯定是要比这要充斥着更多的细节。

变量的创建和销毁

还是上面那个例子,实际上编译器会进行一些变动:

{
    id __weak weakObj = strongObj;
}
// 会变成
{
    id __weak weakObj;
    objc_initWeak(&weakObj, strongObj);
    
    // 离开变量的范围,进行销毁
    objc_destroyWeak(&weakObj);
}

objc_initWeakobjc_destroyWeak 都可以在 NSObject.mm 文件中找到:

id
objc_initWeak(id *location, id newObj)
{
    if (!newObj) {
        *location = nil;
        return nil;
    }

    return storeWeak<false/*old*/, true/*new*/, true/*crash*/>
        (location, (objc_object*)newObj);
}

void
objc_destroyWeak(id *location)
{
    (void)storeWeak<true/*old*/, false/*new*/, false/*crash*/>
        (location, nil);
}

可以看到都是对 storeWeak 函数模板的调用(为什么要使用模板呢?会更快吗?C++ 小白内心的问题…… )。

赋值

当已有的 __weak 变量被重新赋值时会怎么样呢?

weakObj = anotherStrongObj;

// 会变成下面这样
objc_storeWeak(&weakObj, anotherStrongObj);

它的实现如下:

id
objc_storeWeak(id *location, id newObj)
{
    return storeWeak<true/*old*/, true/*new*/, true/*crash*/>
        (location, (objc_object *)newObj);
}

但实际上也还是对 storeWeak 函数模板的封装。

storeWeak

storeWeak 的实现还是有点长的,一点一点来分析:

// Update a weak variable.
// If HaveOld is true, the variable has an existing value 
//   that needs to be cleaned up. This value might be nil.
// If HaveNew is true, there is a new value that needs to be 
//   assigned into the variable. This value might be nil.
// If CrashIfDeallocating is true, the process is halted if newObj is 
//   deallocating or newObj's class does not support weak references. 
//   If CrashIfDeallocating is false, nil is stored instead.
template <bool HaveOld, bool HaveNew, bool CrashIfDeallocating>
static id 
storeWeak(id *location, objc_object *newObj)
{
    assert(HaveOld  ||  HaveNew);
    if (!HaveNew) assert(newObj == nil);

    Class previouslyInitializedClass = nil;
    id oldObj;
    SideTable *oldTable;
    SideTable *newTable;

函数前的注释表明了三个模板参数的作用,当然在后面的代码里也能直观的看到。函数一开始进行了变量的声明,可以注意到 SideTable 这个类型,SideTable 是现在的运行时中用来存放引用计数和弱引用的结构体,它的结构是这样的(省略了结构体函数):

struct SideTable {
    spinlock_t slock;
    RefcountMap refcnts;
    weak_table_t weak_table;
}

其中 slock 是一个自旋锁,用来对 SideTable 实例进行操作时的加锁。refcnts 则是存放引用计数的地方。weak_table 则是存放弱引用的地方(后面将详细分析 weak_table_t)。

回到 storeWeak 函数:

    // Acquire locks for old and new values.
    // Order by lock address to prevent lock ordering problems. 
    // Retry if the old value changes underneath us.
 retry:
    if (HaveOld) {
        oldObj = *location;
        oldTable = &SideTables()[oldObj];
    } else {
        oldTable = nil;
    }
    if (HaveNew) {
        newTable = &SideTables()[newObj];
    } else {
        newTable = nil;
    }

    SideTable::lockTwo<HaveOld, HaveNew>(oldTable, newTable);

    if (HaveOld  &&  *location != oldObj) {
        SideTable::unlockTwo<HaveOld, HaveNew>(oldTable, newTable);
        goto retry;
    }

这一段即获取 oldObjoldTablenewTable,并将获取的两个表上锁。注意到获取 oldTablenewTable 时,其实是用对象的地址当作 key 从 SideTables 获取的,SideTables 返回的就是一个哈希表,存储着若干个 SideTable,一般是 64 个。

    // Prevent a deadlock between the weak reference machinery
    // and the +initialize machinery by ensuring that no 
    // weakly-referenced object has an un-+initialized isa.
    if (HaveNew  &&  newObj) {
        Class cls = newObj->getIsa();
        if (cls != previouslyInitializedClass  &&  
            !((objc_class *)cls)->isInitialized()) 
        {
            SideTable::unlockTwo<HaveOld, HaveNew>(oldTable, newTable);
            _class_initialize(_class_getNonMetaClass(cls, (id)newObj));

            // If this class is finished with +initialize then we're good.
            // If this class is still running +initialize on this thread 
            // (i.e. +initialize called storeWeak on an instance of itself)
            // then we may proceed but it will appear initializing and 
            // not yet initialized to the check above.
            // Instead set previouslyInitializedClass to recognize it on retry.
            previouslyInitializedClass = cls;

            goto retry;
        }
    }

上面这一段代码也有着很好的注释,就是要确保对象的类已经走过 +initialize 流程了。

    // Clean up old value, if any.
    if (HaveOld) {
        weak_unregister_no_lock(&oldTable->weak_table, oldObj, location);
    }

    // Assign new value, if any.
    if (HaveNew) {
        newObj = (objc_object *)weak_register_no_lock(&newTable->weak_table, 
                                                      (id)newObj, location, 
                                                      CrashIfDeallocating);
        // weak_register_no_lock returns nil if weak store should be rejected

        // Set is-weakly-referenced bit in refcount table.
        if (newObj  &&  !newObj->isTaggedPointer()) {
            newObj->setWeaklyReferenced_nolock();
        }

        // Do not set *location anywhere else. That would introduce a race.
        *location = (id)newObj;
    }
    else {
        // No new value. The storage is not changed.
    }
    
    SideTable::unlockTwo<HaveOld, HaveNew>(oldTable, newTable);

    return (id)newObj;
}

最后一段的逻辑也是很清晰的。首先,如果有旧的值(HaveOld),则使用 weak_unregister_no_lock 函数将其从 oldTableweak_table 中移除。其次,如果有新的值(HaveNew),则使用 weak_register_no_lock 函数将其注册到 newTableweak_table 中,并使用 setWeaklyReferenced_nolock 函数将对象标记为被弱引用过。

storeWeak 的实现就告一段落了,其重点就在 weak_register_no_lockweak_unregister_no_lock 函数上。

weak_table_t

在分析这两个函数之前,先看看 weak_table_t 是一个怎么样的结构:

/**
 * The global weak references table. Stores object ids as keys,
 * and weak_entry_t structs as their values.
 */
struct weak_table_t {
    weak_entry_t *weak_entries;
    size_t    num_entries;
    uintptr_t mask;
    uintptr_t max_hash_displacement;
};
  • weak_entries 便是存放弱引用的数组;
  • num_entries 是存放的 weak_entry_t 条目的数量;
  • mask 则是动态申请的弱引用数组 weak_entries 长度减 1 的值,用来对哈希后的值取余和记录数组大小;
  • max_hash_displacement 则是哈希碰撞后最大的位移值。

其实 weak_table_t 就是一个动态增长的哈希表。

继续看看其相关的操作,首先是对整个表的扩大:

#define TABLE_SIZE(entry) (entry->mask ? entry->mask + 1 : 0)

// Grow the given zone's table of weak references if it is full.
static void weak_grow_maybe(weak_table_t *weak_table)
{
    size_t old_size = TABLE_SIZE(weak_table);

    // Grow if at least 3/4 full.
    if (weak_table->num_entries >= old_size * 3 / 4) {
        weak_resize(weak_table, old_size ? old_size*2 : 64);
    }
}

可以看到,当 weak_table 里的弱引用条目达到它容量的四分之三时,便会将容量拓展为两倍。值得注意的是第一次拓展也就是是 mask 为 0 的情况,初始值是 64。实际对弱引用表大小的操作则交给了 weak_resize 函数。

除了扩大,当然也还有缩小:

// Shrink the table if it is mostly empty.
static void weak_compact_maybe(weak_table_t *weak_table)
{
    size_t old_size = TABLE_SIZE(weak_table);

    // Shrink if larger than 1024 buckets and at most 1/16 full.
    if (old_size >= 1024  && old_size / 16 >= weak_table->num_entries) {
        weak_resize(weak_table, old_size / 8);
        // leaves new table no more than 1/2 full
    }
}

缩小的话则是需要表本身大于等于 1024 并且存放了不足十六分之一的条目时,直接缩小 8 倍。实际工作也是交给了 weak_resize 函数:

static void weak_resize(weak_table_t *weak_table, size_t new_size)
{
    size_t old_size = TABLE_SIZE(weak_table);

    weak_entry_t *old_entries = weak_table->weak_entries;
    weak_entry_t *new_entries = (weak_entry_t *)
        calloc(new_size, sizeof(weak_entry_t));

    weak_table->mask = new_size - 1;
    weak_table->weak_entries = new_entries;
    weak_table->max_hash_displacement = 0;
    weak_table->num_entries = 0;  // restored by weak_entry_insert below
    
    if (old_entries) {
        weak_entry_t *entry;
        weak_entry_t *end = old_entries + old_size;
        for (entry = old_entries; entry < end; entry++) {
            if (entry->referent) {
                weak_entry_insert(weak_table, entry);
            }
        }
        free(old_entries);
    }
}

weak_resize 函数的过程就是新建一个数组,将老数组里的值使用 weak_entry_insert 函数添加进去,注意到代码中间 mask 在这里被赋值为新数组的大小减去 1,max_hash_displacementnum_entries 也都清零了,因为 weak_entry_insert 函数会对这两个值进行操作。接着对 weak_entry_insert 函数进行分析:

/** 
 * Add new_entry to the object's table of weak references.
 * Does not check whether the referent is already in the table.
 */
static void weak_entry_insert(weak_table_t *weak_table, weak_entry_t *new_entry)
{
    weak_entry_t *weak_entries = weak_table->weak_entries;
    assert(weak_entries != nil);

    size_t begin = hash_pointer(new_entry->referent) & (weak_table->mask);
    size_t index = begin;
    size_t hash_displacement = 0;
    while (weak_entries[index].referent != nil) {
        index = (index+1) & weak_table->mask;
        if (index == begin) bad_weak_table(weak_entries);
        hash_displacement++;
    }

    weak_entries[index] = *new_entry;
    weak_table->num_entries++;

    if (hash_displacement > weak_table->max_hash_displacement) {
        weak_table->max_hash_displacement = hash_displacement;
    }
}

这个函数就是个很正常的哈希表插入的过程,hash_pointer 函数是对指针地址进行哈希,哈希后的值之所以要和 mask 进行 & 操作,是因为弱引用表的大小永远是 2 的幂(一开始是 64,之后不断乘以 2),mask 则是大小减去 1 即为一个 0b111...11 这么一个数,和它进行 & 运算相当于取余。hash_displacement 则是记录了哈希相撞后偏移的大小。

既然有插入,也就有删除:

/**
 * Remove entry from the zone's table of weak references.
 */
static void weak_entry_remove(weak_table_t *weak_table, weak_entry_t *entry)
{
    // remove entry
    if (entry->out_of_line()) free(entry->referrers);
    bzero(entry, sizeof(*entry));

    weak_table->num_entries--;

    weak_compact_maybe(weak_table);
}

很直接的清零 entry,并给 weak_tablenum_entries 减 1,最后检查看是否需要缩小。

最后还有一个根据指定对象查找存在条目的函数:

/** 
 * Return the weak reference table entry for the given referent. 
 * If there is no entry for referent, return NULL. 
 * Performs a lookup.
 *
 * @param weak_table 
 * @param referent The object. Must not be nil.
 * 
 * @return The table of weak referrers to this object. 
 */
static weak_entry_t *
weak_entry_for_referent(weak_table_t *weak_table, objc_object *referent)
{
    assert(referent);

    weak_entry_t *weak_entries = weak_table->weak_entries;

    if (!weak_entries) return nil;

    size_t begin = hash_pointer(referent) & weak_table->mask;
    size_t index = begin;
    size_t hash_displacement = 0;
    while (weak_table->weak_entries[index].referent != referent) {
        index = (index+1) & weak_table->mask;
        if (index == begin) bad_weak_table(weak_table->weak_entries);
        hash_displacement++;
        if (hash_displacement > weak_table->max_hash_displacement) {
            return nil;
        }
    }
    
    return &weak_table->weak_entries[index];
}

也是很正常的哈希表套路。

weak_entry_t

那弱引用是怎么存储的呢,继续分析 weak_entry_t

#define WEAK_INLINE_COUNT 4

#define REFERRERS_OUT_OF_LINE 2

struct weak_entry_t {
    DisguisedPtr<objc_object> referent;
    union {
        struct {
            weak_referrer_t *referrers;
            uintptr_t        out_of_line_ness : 2;
            uintptr_t        num_refs : PTR_MINUS_2;
            uintptr_t        mask;
            uintptr_t        max_hash_displacement;
        };
        struct {
            // out_of_line_ness field is low bits of inline_referrers[1]
            weak_referrer_t  inline_referrers[WEAK_INLINE_COUNT];
        };
    };

    bool out_of_line() {
        return (out_of_line_ness == REFERRERS_OUT_OF_LINE);
    }

    weak_entry_t& operator=(const weak_entry_t& other) {
        memcpy(this, &other, sizeof(other));
        return *this;
    }

    weak_entry_t(objc_object *newReferent, objc_object **newReferrer)
        : referent(newReferent)
    {
        inline_referrers[0] = newReferrer;
        for (int i = 1; i < WEAK_INLINE_COUNT; i++) {
            inline_referrers[i] = nil;
        }
    }
};

首先 DisguisedPtr<T> 类型和 T* 的行为是一模一样的,这个类型存在的目的是为了躲过内存泄漏工具的检查(注释原文:「DisguisedPtr<T> acts like pointer type T*, except the stored value is disguised to hide it from tools like leaks.」)。所以 DisguisedPtr<objc_object> referent 可以看作是 objc_object *referent

referent 这个指针记录的便是被弱引用的对象。接下来的联合里有两种结构体,先分析第一种:

  • referrersreferrers 是一个 weak_referrer_t 类型的数组,用来存放弱引用变量的地址,weak_referrer_t 的定义是这样的:typedef DisguisedPtr<objc_object *> weak_referrer_t;
  • out_of_line_ness:2 bit 标记位,用来确定联合里的内存是第一个结构体还是第二个结构体;
  • num_refsPTR_MINUS_2 便是字长减去 2 位,和 out_of_line_ness 一起组成一个字长,用来存储 referrers 的大小;
  • maskmax_hash_displacement:和前面分析的一样,做哈希表用到的东西。

可以发现第一种结构体也是一个哈希表,第二种结构体则是一个和第一种结构体一样大的数组,所谓的 inline 存储。存放思路则是首先 inline 存储,当超过 WEAK_INLINE_COUNT 也就是 4 时,再变成第一种的动态哈希表存储。代码下方的构造函数便体现了这个思路。

可以注意到 weak_entry_t 重载了赋值操作符,将赋值变成了一个拷贝内存的操作。

相关操作也是和上面 weak_table_t 的类似,只不过加上了 inline 存储情况的变化,就不详细分析了。

weak_register_no_lock

开始分析 weak_register_no_lock 函数:

/** 
 * Registers a new (object, weak pointer) pair. Creates a new weak
 * object entry if it does not exist.
 * 
 * @param weak_table The global weak table.
 * @param referent The object pointed to by the weak reference.
 * @param referrer The weak pointer address.
 */
id 
weak_register_no_lock(weak_table_t *weak_table, id referent_id, 
                      id *referrer_id, bool crashIfDeallocating)
{
    objc_object *referent = (objc_object *)referent_id;
    objc_object **referrer = (objc_object **)referrer_id;

    if (!referent  ||  referent->isTaggedPointer()) return referent_id;

第一段,约等于什么都没干。referent 是被弱引用的对象,referrer 则是弱引用变量的地址。

    // ensure that the referenced object is viable
    bool deallocating;
    if (!referent->ISA()->hasCustomRR()) {
        deallocating = referent->rootIsDeallocating();
    }
    else {
        BOOL (*allowsWeakReference)(objc_object *, SEL) = 
            (BOOL(*)(objc_object *, SEL))
            object_getMethodImplementation((id)referent, 
                                           SEL_allowsWeakReference);
        if ((IMP)allowsWeakReference == _objc_msgForward) {
            return nil;
        }
        deallocating =
            ! (*allowsWeakReference)(referent, SEL_allowsWeakReference);
    }

这一段很有意思,如果对象没有自定义的内存管理方法(hasCustomRR),则将 deallocating 变量赋值为 rootIsDeallocating 也就是是否正在销毁。但是如果有自定义的内存管理方法的话,发送的是
allowsWeakReference 这个消息,即是否允许弱引用。不管怎么样,我们得到了一个 deallocating 变量。

    if (deallocating) {
        if (crashIfDeallocating) {
            _objc_fatal("Cannot form weak reference to instance (%p) of "
                        "class %s. It is possible that this object was "
                        "over-released, or is in the process of deallocation.",
                        (void*)referent, object_getClassName((id)referent));
        } else {
            return nil;
        }
    }

从上面一段可以知道,deallocatingtrue 的话肯定是有问题的,所以这一段处理一下。

    // now remember it and where it is being stored
    weak_entry_t *entry;
    if ((entry = weak_entry_for_referent(weak_table, referent))) {
        append_referrer(entry, referrer);
    } 
    else {
        weak_entry_t new_entry(referent, referrer);
        weak_grow_maybe(weak_table);
        weak_entry_insert(weak_table, &new_entry);
    }

    // Do not set *referrer. objc_storeWeak() requires that the 
    // value not change.

    return referent_id;
}

最后一段终于做了正事了!首先先用 weak_entry_for_referent 函数搜索对象是否已经有了 weak_entry_t 类型的条目,有的话则使用 append_referrer 添加一个变量位置进去,没有的话则新建一个 weak_entry_t 条目,使用 weak_grow_maybe 函数扩大(如果需要的话)弱引用表的大小,并使用 weak_entry_insert 将弱引用插入表中。

weak_unregister_no_lock

接下来是 weak_unregister_no_lock 函数:

void
weak_unregister_no_lock(weak_table_t *weak_table, id referent_id, 
                        id *referrer_id)
{
    objc_object *referent = (objc_object *)referent_id;
    objc_object **referrer = (objc_object **)referrer_id;

    weak_entry_t *entry;

    if (!referent) return;

    if ((entry = weak_entry_for_referent(weak_table, referent))) {
        remove_referrer(entry, referrer);
        bool empty = true;
        if (entry->out_of_line()  &&  entry->num_refs != 0) {
            empty = false;
        }
        else {
            for (size_t i = 0; i < WEAK_INLINE_COUNT; i++) {
                if (entry->inline_referrers[i]) {
                    empty = false; 
                    break;
                }
            }
        }

        if (empty) {
            weak_entry_remove(weak_table, entry);
        }
    }

    // Do not set *referrer = nil. objc_storeWeak() requires that the 
    // value not change.
}

主要功能实现思路很简单,使用 weak_entry_for_referent 函数找到对应的弱引用条目,并用 remove_referrer 将对应的弱引用变量位置从中移除。最后判断条目是否为空,为空则使用 weak_entry_remove 将其从弱引用表中移除。

自动置为 nil

对象销毁后,弱引用变量被置为 nil 是因为在对象 dealloc 的过程中调用了 weak_clear_no_lock 函数:

/** 
 * Called by dealloc; nils out all weak pointers that point to the 
 * provided object so that they can no longer be used.
 * 
 * @param weak_table 
 * @param referent The object being deallocated. 
 */
void 
weak_clear_no_lock(weak_table_t *weak_table, id referent_id) 
{
    objc_object *referent = (objc_object *)referent_id;

    weak_entry_t *entry = weak_entry_for_referent(weak_table, referent);
    if (entry == nil) {
        /// XXX shouldn't happen, but does with mismatched CF/objc
        //printf("XXX no entry for clear deallocating %p\n", referent);
        return;
    }

首先初始化一下,获取到弱引用条目,顺便处理没有弱引用的情况。

    // zero out references
    weak_referrer_t *referrers;
    size_t count;
    
    if (entry->out_of_line()) {
        referrers = entry->referrers;
        count = TABLE_SIZE(entry);
    } 
    else {
        referrers = entry->inline_referrers;
        count = WEAK_INLINE_COUNT;
    }

获取弱引用变量位置数组和个数。

    for (size_t i = 0; i < count; ++i) {
        objc_object **referrer = referrers[i];
        if (referrer) {
            if (*referrer == referent) {
                *referrer = nil;
            }
            else if (*referrer) {
                _objc_inform("__weak variable at %p holds %p instead of %p. "
                             "This is probably incorrect use of "
                             "objc_storeWeak() and objc_loadWeak(). "
                             "Break on objc_weak_error to debug.\n", 
                             referrer, (void*)*referrer, (void*)referent);
                objc_weak_error();
            }
        }
    }
    
    weak_entry_remove(weak_table, entry);
}

循环将它们置为 nil,最后移除整个弱引用条目。

访问弱引用

在访问一个弱引用时,ARC 会对其进行一些操作:

obj = weakObj;

// 会变成
objc_loadWeakRetained(&weakObj);
obj = weakObj;
objc_release(weakObj);

objc_loadWeakRetained 函数的主要作用就是调用了 rootTryRetain 函数:

ALWAYS_INLINE bool 
objc_object::rootTryRetain()
{
    return rootRetain(true, false) ? true : false;
}

实际上就是尝试对引用计数加 1,让弱引用对象在使用时不会被释放掉。

有关 rootRetain 的实现:《Objective-C 小记(7)retain & release》

总结

存放一个弱引用还真是哈希了很多次:

  1. SideTable 哈希一次,这里分开来应该是为了性能原因;
  2. weak_table_t 哈希一次;
  3. weak_entry_t 哈希一次。

对于开销,直观感受上也并没有什么很大开销,想用就用呗……

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,602评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,442评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,878评论 0 344
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,306评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,330评论 5 373
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,071评论 1 285
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,382评论 3 400
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,006评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,512评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,965评论 2 325
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,094评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,732评论 4 323
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,283评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,286评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,512评论 1 262
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,536评论 2 354
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,828评论 2 345

推荐阅读更多精彩内容