网上有给出简单的线程池大小估算方法
如果是CPU密集型应用,则线程池大小设置为N+1
如果是IO密集型应用,则线程池大小设置为2N+1
然而这两个公式显然是不管用的,除非整个CPU服务于一个线程池<br /> <br />管用的估算方法也有,但是比较复杂
最佳线程数目 =((线程等待时间+线程CPU时间)/线程CPU时间 )* CPU数目
此公式可进一步转换为
最佳线程数目 =(线程等待时间与线程CPU时间之比 + 1)* CPU数目
然而 线程等待时间 和 线程CPU时间 这两个变量却很难精确得到
所幸网上已经有相关的程序帮我们自动通过上面的公式计算出结果
估算类代码如下
import java.math.BigDecimal;
import java.math.RoundingMode;
import java.util.Timer;
import java.util.TimerTask;
import java.util.concurrent.BlockingQueue;
/**
* A class that calculates the optimal thread pool boundaries. It takes the
* desired target utilization and the desired work queue memory consumption as
* input and retuns thread count and work queue capacity.
*
* @author Niklas Schlimm
*/
public abstract class PoolSizeCalculator {
/**
* The sample queue size to calculate the size of a single {@link Runnable}
* element.
*/
private final int SAMPLE_QUEUE_SIZE = 1000;
/**
* Accuracy of test run. It must finish within 20ms of the testTime
* otherwise we retry the test. This could be configurable.
*/
private final int EPSYLON = 20;
/**
* Control variable for the CPU time investigation.
*/
private volatile boolean expired;
/**
* Time (millis) of the test run in the CPU time calculation.
*/
private final long testtime = 3000;
/**
* Calculates the boundaries of a thread pool for a given {@link Runnable}.
*
* @param targetUtilization the desired utilization of the CPUs (0 <= targetUtilization <= * 1) * @param targetQueueSizeBytes * the desired maximum work queue size of the thread pool (bytes)
*/
protected void calculateBoundaries(BigDecimal targetUtilization, BigDecimal targetQueueSizeBytes) {
calculateOptimalCapacity(targetQueueSizeBytes);
Runnable task = creatTask();
start(task);
start(task); // warm up phase
long cputime = getCurrentThreadCPUTime();
start(task);
// test intervall
cputime = getCurrentThreadCPUTime() - cputime;
long waittime = (testtime * 1000000) - cputime;
calculateOptimalThreadCount(cputime, waittime, targetUtilization);
}
private void calculateOptimalCapacity(BigDecimal targetQueueSizeBytes) {
long mem = calculateMemoryUsage();
BigDecimal queueCapacity = targetQueueSizeBytes.divide(new BigDecimal(mem), RoundingMode.HALF_UP);
System.out.println("Target queue memory usage (bytes): " + targetQueueSizeBytes);
System.out.println("createTask() produced " + creatTask().getClass().getName() + " which took " + mem + " bytes in a queue");
System.out.println("Formula: " + targetQueueSizeBytes + " / " + mem);
System.out.println("* Recommended queue capacity (bytes): " + queueCapacity);
}
/**
* Brian Goetz' optimal thread count formula, see 'Java Concurrency in * Practice' (chapter 8.2) * * @param cpu * cpu time consumed by considered task * @param wait * wait time of considered task * @param targetUtilization * target utilization of the system
*/
private void calculateOptimalThreadCount(long cpu, long wait, BigDecimal targetUtilization) {
BigDecimal waitTime = new BigDecimal(wait);
BigDecimal computeTime = new BigDecimal(cpu);
BigDecimal numberOfCPU = new BigDecimal(Runtime.getRuntime().availableProcessors());
BigDecimal optimalthreadcount = numberOfCPU.multiply(targetUtilization).multiply(new BigDecimal(1).add(waitTime.divide(computeTime, RoundingMode.HALF_UP)));
System.out.println("Number of CPU: " + numberOfCPU);
System.out.println("Target utilization: " + targetUtilization);
System.out.println("Elapsed time (nanos): " + (testtime * 1000000));
System.out.println("Compute time (nanos): " + cpu);
System.out.println("Wait time (nanos): " + wait);
System.out.println("Formula: " + numberOfCPU + " * " + targetUtilization + " * (1 + " + waitTime + " / " + computeTime + ")");
System.out.println("* Optimal thread count: " + optimalthreadcount);
}
/**
* Runs the {@link Runnable} over a period defined in {@link #testtime}. * Based on Heinz Kabbutz' ideas * (http://www.javaspecialists.eu/archive/Issue124.html). * * @param task * the runnable under investigation
*/
public void start(Runnable task) {
long start = 0;
int runs = 0;
do {
if (++runs > 5) {
throw new IllegalStateException("Test not accurate");
}
expired = false;
start = System.currentTimeMillis();
Timer timer = new Timer();
timer.schedule(new TimerTask() {
public void run() {
expired = true;
}
}, testtime);
while (!expired) {
task.run();
}
start = System.currentTimeMillis() - start;
timer.cancel();
} while (Math.abs(start - testtime) > EPSYLON);
collectGarbage(3);
}
private void collectGarbage(int times) {
for (int i = 0; i < times; i++) {
System.gc();
try {
Thread.sleep(10);
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
break;
}
}
}
/**
* Calculates the memory usage of a single element in a work queue. Based on
* Heinz Kabbutz' ideas
* (http://www.javaspecialists.eu/archive/Issue029.html).
*
* @return memory usage of a single {@link Runnable} element in the thread
* pools work queue
*/
public long calculateMemoryUsage() {
BlockingQueue queue = createWorkQueue();
for (int i = 0; i < SAMPLE_QUEUE_SIZE; i++) {
queue.add(creatTask());
}
long mem0 = Runtime.getRuntime().totalMemory()
- Runtime.getRuntime().freeMemory();
long mem1 = Runtime.getRuntime().totalMemory()
- Runtime.getRuntime().freeMemory();
queue = null;
collectGarbage(15);
mem0 = Runtime.getRuntime().totalMemory()
- Runtime.getRuntime().freeMemory();
queue = createWorkQueue();
for (int i = 0; i < SAMPLE_QUEUE_SIZE; i++) {
queue.add(creatTask());
}
collectGarbage(15);
mem1 = Runtime.getRuntime().totalMemory()
- Runtime.getRuntime().freeMemory();
return (mem1 - mem0) / SAMPLE_QUEUE_SIZE;
}
/**
* Create your runnable task here.
*
* @return an instance of your runnable task under investigation
*/
protected abstract Runnable creatTask();
/**
* Return an instance of the queue used in the thread pool.
*
* @return queue instance
*/
protected abstract BlockingQueue createWorkQueue();
/**
* Calculate current cpu time. Various frameworks may be used here,
* depending on the operating system in use. (e.g.
* http://www.hyperic.com/products/sigar). The more accurate the CPU time
* measurement, the more accurate the results for thread count boundaries.
*
* @return current cpu time of current thread
*/
protected abstract long getCurrentThreadCPUTime();
}
类使用方法如下
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.lang.management.ManagementFactory;
import java.math.BigDecimal;
import java.net.HttpURLConnection;
import java.net.URL;
import java.util.concurrent.BlockingQueue;
import java.util.concurrent.LinkedBlockingQueue;
class AsyncIOTask implements Runnable {
@Override
public void run() {
HttpURLConnection connection = null;
BufferedReader reader = null;
try {
String getURL = "https://www.baidu.com/";
URL getUrl = new URL(getURL);
connection = (HttpURLConnection) getUrl.openConnection();
connection.connect();
reader = new BufferedReader(new InputStreamReader(
connection.getInputStream()));
String line;
while ((line = reader.readLine()) != null) {
// empty loop
}
}
catch (IOException e) {
} finally {
if(reader != null) {
try {
reader.close();
}
catch(Exception e) {
}
}
connection.disconnect();
}
}
}
public class Main extends PoolSizeCalculator{
@Override
protected Runnable creatTask() {
return new AsyncIOTask();
}
@Override
protected BlockingQueue createWorkQueue() {
return new LinkedBlockingQueue(1000);
}
@Override
protected long getCurrentThreadCPUTime() {
return ManagementFactory.getThreadMXBean().getCurrentThreadCpuTime();
}
public static void main(String[] args) {
PoolSizeCalculator poolSizeCalculator = new Main();
poolSizeCalculator.calculateBoundaries(new BigDecimal(1.0), new BigDecimal(100000));
}
}
在我的一台4核电脑PC上,当期望工作队列的大小不超过100KB的情况下,对于一系列请求百度的http任务,得出的结果如下
Target queue memory usage (bytes): 100000
createTask() produced AsyncIOTask which took 40 bytes in a queue
Formula: 100000 / 40
* Recommended queue capacity (bytes): 2500
Number of CPU: 4
Target utilization: 1
Elapsed time (nanos): 3000000000
Compute time (nanos): 125000000
Wait time (nanos): 2875000000
Formula: 4 * 1 * (1 + 2875000000 / 125000000)
* Optimal thread count: 96
工作队列的大小为:2500
公式计算:4 * 1 * (1 + 2875000000 / 125000000)
线程数池大小:96
我们可以通过上面的结果创建如下线程池
ThreadPoolExecutor threadPoolExecutor = new ThreadPoolExecutor(96,96,0L,TimeUnit.SECONDS,new LinkedBlockingQueue<>(2500));