「Coursera」深度学习导论 1-2 线性模型(上)| 课程笔记

作者/编辑 | 橘子 配图:深度学习导论课程slides 来源 | 橘子AI笔记(ID:datawitch)


最近在学习Coursera上的高级机器学习专项课程(Advanced Machine Learning),它的介绍页是这样写的:这门课程主要讲解了深度学习、强化学习、自然语言理解、计算机视觉和贝叶斯方法。除了理论知识,Kaggle比赛的高分选手和CERN的科学家也将分享他们解决实际问题的经验,并帮助您填补理论和实践之间的空白。在完成7门课程后,您将能够在企业中应用现代机器学习方法,并了解使用数据和配置参数时的注意事项。

深度学习导论(Introduction to Deep Learning)是专项课程系列中的第一部分,这部分包括:

第1周 - 最优化理论

第2周 - 神经网络导论

第3周 - 深度学习图像处理

第4周 - 无监督表征学习

第5周 - 深度学习文本处理

第6周 - 结课项目

本文是第1周第2份课程笔记:线性模型(上)

往期回顾:「Coursera」深度学习导论 1-1 课程介绍 | 课程笔记

新手教程:超详细!Win10深度学习GPU开发环境搭建步骤 | 教程


这节课我们将会学习线性模型(linear model)

首先举一个例子:现在要写一个函数,它的输入是一张图片,输出是图片中海豹的数量,这个函数应该怎么写呢?

有一种思路是尝试检测图片中出现的物体边缘,然后进行统计,但是这样的方法不如用机器学习。

用机器学习的方法怎样来数沙滩上的海豹?首先,我们要收集许多标注好的数据,比如几千张,甚至上百万张海豹图片。然后人工地去数清楚这些图片中都有几只海豹,再尝试从这些标注好的数据集中习得一个拟合效果最好的函数。

首先来讲一些基本概念,在机器学习中,我们要学习的图片、或者其他任何类型的数据,被称为一个样本(example)用x表示,每个样本都有许多特征(features),比如对图片来说,特征可以是每个像素点的数值。

在有监督学习中,每个样本还对应于一个目标值(target value)用y表示,相当于“标准答案”,比如在数海豹的问题中,我们的目标值就是每张图片中海豹的数量。这样,每个x值比如x_i就对应一个目标值y_i。

在训练集中,我们有很多对这样的x和y,合起来用X表示。这个X就包括了训练集中所有的样本及其特征,以及对应的目标值。我们用a(x)来表示模型(model)或者假说(hypothesis),机器学习的目标就是找到最能拟合(fit)训练集的模型。


01. 回归问题与分类问题

有监督学习(supervised learning)问题主要分为两类:回归(regression)分类(classification)问题。

在回归问题中,目标值是一个实数。比如在数海豹的问题中,目标值是海豹的数量。又比如,现在给出职位描述,要求预测这个职位的薪水,薪水也是实数。再比如,给出影评,要求预测写这篇影评的用户对电影的打分(0-5分),这个打分也是实数。

在分类问题中,目标值是离散的,其数量是有限个(finite),而不是一个连续的区间。比如物体检测,我们希望找出一张照片中有没有猫啊狗啊或者自行车啊什么的,可以分为有限个类别,那这个时候就是在做分类。再比如,给出一篇新文章,希望预测出这篇文章属于什么话题:政治?体育?还是娱乐新闻什么的。这里类别的数量也是有限的。


02. 回归问题中的线性模型

我们来看一个非常简单的数据集。在这个数据集中,每个样本只有一个特征,对应于一个目标值,而目标值是实数。

通过这张图,我们可以看到它是一个线性趋势(linear trend)的关系,如果x值增大2倍,那么y值大概对应地减小2倍。所以我们应该可以用线性模型来描述这批数据,构建一个预测模型。

那么这个公式就描述了我们的线性模型。它非常简单,只有两个参数,w1和b。如果计算出w1和b的最佳数值,就会得到图中的这条直线。

虽然它不能完美、精确地根据每一个x值计算出它对应的y值,但已经能够很好地描述x和y之间的关系,能很好地拟合我们的数据集。

当然,在大多数机器学习问题中,都有不止一个特征。下图中展示的是通用线性模型的公式,对于每一个特征x_j,都乘以它对应的权重(weight)值w_j,我们把所有这些项加起来,再加上一个偏置(bias)项b,就得到了通用线性模型的表达式。

用d表示我们数据集中的特征数,那么这个公式有d+1个参数,也就是d个权重值w,加上一个偏置项b。线性模型是非常简单的模型,因为同样多的特征数如果要用神经网络模型,参数要多得多。

为了更加简化,我们可以假设在每个样本中,都有一个伪特征值,它的值是常数1,有这个特征的系数就是偏置项。所以,在后面的讲解中,我们不会单独把偏置项拿出来,而是归在权重值当中去考虑。

那么这样的话,我们就可以很方便地写出线性模型的矩阵(matrix)形式。

根据线性代数的知识,我们很容易得知上张幻灯片中讲到的形式可以写成这个点积(dot product)的形式,也就是向量(vector)的相乘、相加。线性模型的输出是权重向量和特征向量X的点积。

那么如果我们要将模型运用到整个数据集或者新的样本当中,需要怎么做呢?首先用X表示样本矩阵,它有L行d列,每行表示一个样本,每列表示该样本的所有特征。这时候X与权重矩阵w的点积就是我们的预测,这个结果是一个长度为L的向量,它包括了我们的线性模型对每个样本的预测值。

计算题:假设训练集中有10个样本,每个样本有5个特征,那么X矩阵有多少个元素?(答案见文末)

03. 损失函数

机器学习的另一个重要问题是计算损失(loss),也就是我们如何衡量预测值与数据集(训练集或者测试集)之间的差距(error)

回归问题中最流行的一种损失函数(loss function)均方差损失(Mean Squared Error, MSE)

它的表达式是这样的:比如我们的数据集是X_i,线性模型的预测结果是w与X_i的点积,我们用这个预测值减去真实的目标值y_i,来计算预测值与真实值之间的偏差(deviation),然后取一个平方,再对整个数据集上所有样本的计算结果取平均,就得到了均方差损失值。

它可以衡量我们的模型能在多大程度上去拟合我们的数据:均方差损失值越小,模型对数据的拟合效果就越好。

当然,均方差也可以写成向量形式。w矩阵与X矩阵的点积得到的向量就表示了我们对数据集中所有样本的预测值,然后我们还可以用向量的形式表示出所有样本对应的真实目标值,预测值矩阵与真实值矩阵相减,再取其欧几里得范数(Euclidean norm),表示的也是均方差。

那么现在,我们有了衡量模型拟合好坏程度的损失函数,接下来要做的就是求损失函数对参数w的最小值。也就是说,我们希望找到一组参数w,它能使得损失函数取到最小值。这就是机器学习的核心思想:我们通过优化损失函数,来找到针对某问题的最佳模型。

其实如果你懂微积分,就不难看出,我们可以通过求导并解出方程的方式得出这些最优化问题(optimization problem)的解析解(analytical solution)。但是这样做的话,会需要求逆矩阵,计算非常复杂。

而且如果特征的数量多达成百上千个,X的转置乘X这个项的逆矩阵就会很难求。即使我们可以将问题简化到用线性方程去表示,它依然是很难解的,并且会需要用到大量的计算资源。

在之后的课程中,我们将会学习针对这类优化问题的,更好、可拓展性更强的求解方式。


04. 最后的总结

回顾一下,在本节课程中,我们学习了回归问题中的线性模型。线性模型十分简单,但对深度神经网络而言也非常有效。我们明白理论上可以求得问题的解析解,但实际上难以计算。

在接下来的课程中,我们会学习到更有效的求解方法。在那之前会先学习分类问题中的线性模型。

刚才计算题的答案是:50


参考资料:

https://www.coursera.org/learn/intro-to-deep-learning/home/welcome

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,937评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,503评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,712评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,668评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,677评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,601评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,975评论 3 396
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,637评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,881评论 1 298
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,621评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,710评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,387评论 4 319
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,971评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,947评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,189评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,805评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,449评论 2 342