GBDT
1. GBDT原理
- 先用一个初始值去学习一棵树,然后在叶子处得到预测值以及预测后的残差,之后的树则基于之前树的残差不断的拟合得到,从而训练出一系列的树作为模型。
- 当GBDT的损失函数是平方损失时, 负梯度即为我们所说的残差,GBDT的思想就是在每次迭代中拟合残差来学习一个弱学习器,残差的方向即为我们全局最优的方向。
- 当损失函数不为平方损失时,使用损失函数负梯度的方向代替残差方向,我们称损失函数负梯度为伪残差,而伪残差的方向即为我们局部最优的方向。
2. GBDT调参
第一类是Boosting框架的重要参数,第二类是弱学习器即CART回归树的重要参数。
2.1. Boosting框架参数
- n_estimators: 也就是弱学习器的最大迭代次数,或者说最大的弱学习器的个数。一般来说n_estimators太小,容易欠拟合,n_estimators太大,又容易过拟合,一般选择一个适中的数值。默认是100。在实际调参的过程中,我们常常将n_estimators和下面介绍的参数learning_rate一起考虑。
- learning_rate: 即每个弱学习器的权重缩减系数ν,也称作步长,在原理篇的正则化章节我们也讲到了,加上了正则化项,我们的强学习器的迭代公式为fk(x)=fk−1(x)+νhk(x)。ν的取值范围为0<ν≤1。对于同样的训练集拟合效果,较小的ν意味着我们需要更多的弱学习器的迭代次数。通常我们用步长和迭代最大次数一起来决定算法的拟合效果。所以这两个参数n_estimators和learning_rate要一起调参。一般来说,可以从一个小一点的ν开始调参,默认是1。
- subsample: 即我们在原理篇的正则化章节讲到的子采样,取值为(0,1]。注意这里的子采样和随机森林不一样,随机森林使用的是放回抽样,而这里是不放回抽样。如果取值为1,则全部样本都使用,等于没有使用子采样。如果取值小于1,则只有一部分样本会去做GBDT的决策树拟合。选择小于1的比例可以减少方差,即防止过拟合,但是会增加样本拟合的偏差,因此取值不能太低。推荐在[0.5, 0.8]之间,默认是1.0,即不使用子采样。
- init: 即我们的初始化的时候的弱学习器,拟合对应原理篇里面的f0(x),如果不输入,则用训练集样本来做样本集的初始化分类回归预测。否则用init参数提供的学习器做初始化分类回归预测。一般用在我们对数据有先验知识,或者之前做过一些拟合的时候,如果没有的话就不用管这个参数了。
-
loss: 即我们GBDT算法中的损失函数。分类模型和回归模型的损失函数是不一样的。
- 对于分类模型,有对数似然损失函数"deviance"和指数损失函数"exponential"两者输入选择。默认是对数似然损失函数"deviance"。在原理篇中对这些分类损失函数有详细的介绍。一般来说,推荐使用默认的"deviance"。它对二元分离和多元分类各自都有比较好的优化。而指数损失函数等于把我们带到了Adaboost算法。
- 对于回归模型,有均方差"ls", 绝对损失"lad", Huber损失"huber"和分位数损失“quantile”。默认是均方差"ls"。一般来说,如果数据的噪音点不多,用默认的均方差"ls"比较好。如果是噪音点较多,则推荐用抗噪音的损失函数"huber"。而如果我们需要对训练集进行分段预测的时候,则采用“quantile”。
- alpha:这个参数只有GradientBoostingRegressor有,当我们使用Huber损失"huber"和分位数损失“quantile”时,需要指定分位数的值。默认是0.9,如果噪音点较多,可以适当降低这个分位数的值
2.2. CART回归树的参数
- max_features: 划分时考虑的最大特征数, 可以使用很多种类型的值,默认是"None",意味着划分时考虑所有的特征数;如果是整数,代表考虑的特征绝对数。如果是浮点数,代表考虑特征百分比,即考虑(百分比xN)取整后的特征数。其中N为样本总特征数。一般来说,如果样本特征数不多,比如小于50,我们用默认的"None"就可以了,如果特征数非常多,我们可以灵活使用刚才描述的其他取值来控制划分时考虑的最大特征数,以控制决策树的生成时间。
- max_depth: 决策树最大深度, 默认可以不输入,如果不输入的话,决策树在建立子树的时候不会限制子树的深度。一般来说,数据少或者特征少的时候可以不管这个值。如果模型样本量多,特征也多的情况下,推荐限制这个最大深度,具体的取值取决于数据的分布。常用的可以取值10-100之间。
- min_samples_split: 内部节点再划分所需最小样本数, 这个值限制了子树继续划分的条件,如果某节点的样本数少于min_samples_split,则不会继续再尝试选择最优特征来进行划分。默认是2。如果样本量不大,不需要管这个值。如果样本量数量级非常大,则推荐增大这个值。
- min_samples_leaf: 叶子节点最少样本数, 这个值限制了叶子节点最少的样本数,如果某叶子节点数目小于样本数,则会和兄弟节点一起被剪枝。 默认是1,可以输入最少的样本数的整数,或者最少样本数占样本总数的百分比。如果样本量不大,不需要管这个值。如果样本量数量级非常大,则推荐增大这个值。
- min_weight_fraction_leaf:叶子节点最小的样本权重和, 这个值限制了叶子节点所有样本权重和的最小值,如果小于这个值,则会和兄弟节点一起被剪枝。 默认是0,就是不考虑权重问题。一般来说,如果我们有较多样本有缺失值,或者分类树样本的分布类别偏差很大,就会引入样本权重,这时我们就要注意这个值了。
- max_leaf_nodes: 最大叶子节点数, 通过限制最大叶子节点数,可以防止过拟合,默认是"None”,即不限制最大的叶子节点数。如果加了限制,算法会建立在最大叶子节点数内最优的决策树。如果特征不多,可以不考虑这个值,但是如果特征分成多的话,可以加以限制,具体的值可以通过交叉验证得到。
- min_impurity_split: 节点划分最小不纯度, 这个值限制了决策树的增长,如果某节点的不纯度(基于基尼系数,均方差)小于这个阈值,则该节点不再生成子节点。即为叶子节点 。一般不推荐改动默认值1e-7。
3. GBDT的优缺点
3.1. 优点
- 预测阶段计算速度快,树与树之间可并行化计算
- 预测精度高
- 适合低维数据
- 能处理非线性数据
- 可以灵活处理各种类型的数据,包括连续值和离散值。
- 在相对少的调参时间情况下,预测的准确率也可以比较高。
- 使用一些健壮的损失函数,对异常值的鲁棒性非常强。比如 Huber损失函数和Quantile损失函数。
3.2. 缺点
- 由于弱学习器之间存在依赖关系,难以并行训练数据。不过可以通过自采样的SGBT来达到部分并行。
- 如果数据维度较高时会加大算法的计算复杂度
4. GBDT的正则化
- 对于每个模型乘以一个系数λ (0 < λ ≤ 1),降低每个模型对拟合损失的贡献,这种方法也意味着我们需要更多的基学习器。
- 每次通过按比例(推荐[0.5, 0.8] 之间)随机抽取部分样本来训练模型,这种方法有点类似Bagging,可以减小方差,但同样会增加模型的偏差,可采用交叉验证选取,这种方式称为子采样。采用子采样的GBDT有时也称为随机梯度提升树(SGBT)。
- 控制基学习器CART树的复杂度,可以采用剪枝正则化。
5. GBDT的并行
GBDT可以并行的部分如下:
- 计算每个样本的负梯度;
- 分裂挑选最佳特征及其分割点时,对特征计算相应的误差及均值时;
- 更新每个样本的负梯度时;
- 最后预测过程中,每个样本将之前的所有树的结果累加的时候。
6. GBDT中决策树对缺失值的处理
- 在决策树学习的初始阶段,根节点各样本的初始权重都为1
- 若样本x在划分属性a上的取值未知,则将x划入所有子节点,同时调整该样本x的权重值为,其中为无缺失值样本在属性a上取值为的样本所占的比例,计算错误率的时候,需要考虑到样本权重
- 训练完成,给测试集样本分类,有缺失值怎么办?
- 如果有单独的缺失分支,使用此分支。
- 把待分类的样本的属性a值分配一个最常出现的a的属性值,然后进行分支预测。
- 根据其他属性为该待分类样本填充一个属性a值,然后进行分支处理。
- 在决策树中属性a节点的分支上,遍历属性a节点的所有分支,探索可能所有的分类结果,然后把这些分类结果结合起来一起考虑,按照概率决定一个分类。
- 待分类样本在到达属性a节点时就终止分类,然后根据此时a节点所覆盖的叶子节点类别状况为其分配一个发生概率最高的类。
7. GBDT中学习率的作用
- 在梯度提升模型中,学习率本质上是误分类样本的权重
- 如果要减少过拟合,就要减少对错误分类的关注
8. GBDT原理参考文章
GBDT分类的原理及Python实现
GBDT原理与Sklearn源码分析-回归篇
GBDT原理与Sklearn源码分析-分类篇
GBDT原理与实践-多分类篇