Mysql性能优化-事务、锁和MVCC

事务

mysql中如何开启事务:

begin/start transaction  --手工

commit/rollback  --事务提交或回滚

set session autocommit = on/off

jdbc编程:connection.setAutoCommit(boolean); ***;connection.commit();

事务具有四个特性,也是面试常考的四个特性ACID:

A(原子性Atomicity):原子性指的是事务是一个不可分割的,要么都执行要么都不执行。

C(一致性Consistency):事务必须使得数据库从一个一致性状态,到另外一个一致性状态。

I(隔离性Isolation):指的是一个事务的执行,不能被其他的事务所干扰。

D(持久性Durability):持久性指的是一个事务一旦提交了之后,对数据库的改变就是永久的

隔离级别

MySQL是一个服务器/客户端架构的软件,对于同一个服务器来说,可以有若干个客户端与之连接,每个客户端与服务器连接上之后,就可以称之为一个会话(Session)。我们可以同时在不同的会话里输入各种语句,这些语句可以作为事务的一部分进行处理。不同的会话可以同时发送请求,也就是说服务器可能同时在处理多个事务,这样子就会导致不同的事务可能同时访问到相同的记录。我们前边说过事务有一个特性称之为隔离性,理论上在某个事务对某个数据进行访问时,其他事务应该进行排队,当该事务提交之后,其他事务才可以继续访问这个数据。但是这样子的话对性能影响太大,所以设计数据库的大叔提出了各种隔离级别,来最大限度的提升系统并发处理事务的能力,但是这也是以牺牲一定的隔离性来达到的。

未提交读(READ UNCOMMITTED)

如果一个事务读到了另一个未提交事务修改过的数据,那么这种隔离级别就称之为未提交读(英文名:READ UNCOMMITTED),示意图如下:

如上图,Session A和Session B各开启了一个事务,Session B中的事务先将id为1的记录的列c更新为'关羽',然后Session A中的事务再去查询这条id为1的记录,那么在未提交读的隔离级别下,查询结果就是'关羽',也就是说某个事务读到了另一个未提交事务修改过的记录。但是如果Session B中的事务稍后进行了回滚,那么Session A中的事务相当于读到了一个不存在的数据,这种现象就称之为脏读,就像这个样子:

脏读违背了现实世界的业务含义,所以这种READ UNCOMMITTED算是十分不安全的一种隔离级别。

已提交读(READ COMMITTED)

如果一个事务只能读到另一个已经提交的事务修改过的数据,并且其他事务每对该数据进行一次修改并提交后,该事务都能查询得到最新值,那么这种隔离级别就称之为已提交读(英文名:READ COMMITTED),如图所示:

从图中可以看到,第4步时,由于Session B中的事务尚未提交,所以Session A中的事务查询得到的结果只是'刘备',而第6步时,由于Session B中的事务已经提交,所以Session B中的事务查询得到的结果就是'关羽'了。

对于某个处在在已提交读隔离级别下的事务来说,只要其他事务修改了某个数据的值,并且之后提交了,那么该事务就会读到该数据的最新值,比方说:

我们在Session B中提交了几个隐式事务,这些事务都修改了id为1的记录的列c的值,每次事务提交之后,Session A中的事务都可以查看到最新的值。这种现象也被称之为不可重复读。

可重复读(REPEATABLE READ)

在一些业务场景中,一个事务只能读到另一个已经提交的事务修改过的数据,但是第一次读过某条记录后,即使其他事务修改了该记录的值并且提交,该事务之后再读该条记录时,读到的仍是第一次读到的值,而不是每次都读到不同的数据。那么这种隔离级别就称之为可重复读(英文名:REPEATABLE READ),如图所示:

从图中可以看出来,Session A中的事务在第一次读取id为1的记录时,列c的值为'刘备',之后虽然Session B中隐式提交了多个事务,每个事务都修改了这条记录,但是Session A中的事务读到的列c的值仍为'刘备',与第一次读取的值是相同的。

但是仍然存在幻读问题:在一个事务的两次查询中数据笔数不一致,例如有一个事务查询了几列(Row)数据,而另一个事务却在此时插入了新的几列数据,先前的事务在接下来的查询中,就会发现有几列数据是它先前所没有的。

串行化(SERIALIZABLE)

以上3种隔离级别都允许对同一条记录进行读-读、读-写、写-读的并发操作,如果我们不允许读-写、写-读的并发操作,可以使用SERIALIZABLE隔离级别,示意图如下:

如图所示,当Session B中的事务更新了id为1的记录后,之后Session A中的事务再去访问这条记录时就被卡住了,直到Session B中的事务提交之后,Session A中的事务才可以获取到查询结果。

事务隔离级别的实现主要用到了锁以及MVCC

锁是用于管理不同事务对共享资源的并发访问。

锁的分类

加锁机制:

1、乐观锁:先修改,保存时判断是够被更新过,应用级别

2、悲观锁:先获取锁,再操作修改,数据库级别

锁粒度:

表级锁:开销小,加锁快,粒度大,锁冲突概率大,并发度低,适用于读多写少的情况。

页级锁:BDB存储引擎

行级锁:Innodb存储引擎,默认选项,innodb存储引擎支持行锁和表锁(另类的行锁),行锁一定是作用在索引上的。

兼容性:

S锁,也叫做读锁、共享锁,对应于我们常用的 select * from users where id =1 lock in share mode

X锁,也叫做写锁、排它锁、独占锁、互斥锁,对应对于select * from users where id =1 for update

S锁 和 X锁是可以是表锁,也可以是行锁,下面这个表格是锁冲突矩阵,可以看到只有读锁和读锁之间兼容的,写锁和读锁、写锁都是冲突的。

共享锁和排它锁

锁模式可以看成实现锁的一个具体的“算法”。

记录锁、间隙锁、临键锁都是排它锁。

记录锁:单行记录上的锁,行锁是加在索引上的,封锁记录,记录锁也叫行锁。

间隙锁:锁定记录之间的范围,但不包含记录本身。在RU和RC两种隔离级别下,即使你使用select ... in share mode或select ... for update,也无法防止幻读(读后写的场景)。因为这两种隔离级别下只会有行锁,而不会有间隙锁

临键锁(Next Key Lock): 记录锁+ 间隙锁,锁定一个范围,包含记录本身

具体临键锁使用实例可以参考这篇文章

https://blog.csdn.net/qq_40378034/article/details/90904573

意向锁(Intention Locks)

InnoDB为了支持多粒度(表锁与行锁)的锁并存,引入意向锁。意向锁是表级锁

IS: 意向共享锁

IX: 意向排他锁

事务在请求某一行的S锁和X锁前,需要先获得对应表的IS、IX锁。

意向锁产生的主要目的是为了处理行锁和表锁之间的冲突,用于表明“某个事务正在某一行上持有了锁,或者准备去持有锁”。比如,表中的某一行上加了X锁,就不能对这张表加X锁。

如果不在表上加意向锁,对表加锁的时候,都要去检查表中的某一行上是否加有行锁,多麻烦

插入意向锁(Insert Intention Lock)

Gap Lock中存在一种插入意向锁,在insert操作时产生。

有两个作用:

和next-key互斥,阻塞next-key 锁,防止插入数据,这样就不会幻读。

插入意向锁互相是兼容的,允许相同间隙、不同数据的并发插入。

只有通过索引条件检索数据,InnoDB才使用行级锁,否则,InnoDB将使用表锁。这一点在实际应用中特别需要注意,不然的话可能导致大量的锁冲突,从而影响引发并发性能

MVCC

MySQL 中 InnoDB 引擎支持 MVCC

应对高并发事务, MVCC 比单纯的加行锁更有效, 开销更小

MVCC 在读已提交(Read Committed)和可重复读(Repeatable Read)隔离级别下起作用

MVCC 既可以基于乐观锁又可以基于悲观锁来实现

InnoDB的MVCC,通过在每行记录后面保存两个隐藏的列来实现:一个保存了行的创建时间,一个保存行的过期时间(删除时间),当然,这里的时间并不是时间戳,而是系统版本号,每开始一个新的事务,系统版本号就会递增。在RR隔离级别下,MVCC的操作如下:

select操作。

InnoDB只查找版本早于(包含等于)当前事务版本的数据行。可以确保事务读取的行,要么是事务开始前就已存在,或者事务自身插入或修改的记录。

行的删除版本要么未定义,要么大于当前事务版本号。可以确保事务读取的行,在事务开始之前未删除。

insert操作。将新插入的行保存当前版本号为行版本号。

delete操作。将删除的行保存当前版本号为删除标识。

update操作。变为insert和delete操作的组合,insert的行保存当前版本号为行版本号,delete则保存当前版本号到原来的行作为删除标识。

由于旧数据并不真正的删除,所以必须对这些数据进行清理,innodb会开启一个后台线程执行清理工作,具体的规则是将删除版本号小于当前系统版本的行删除,这个过程叫做purge。

部分内容参考

https://www.jianshu.com/p/120fcab69de6

https://blog.csdn.net/qq_38538733/article/details/88902979

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 199,711评论 5 468
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 83,932评论 2 376
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 146,770评论 0 330
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 53,799评论 1 271
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 62,697评论 5 359
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,069评论 1 276
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,535评论 3 390
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,200评论 0 254
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,353评论 1 294
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,290评论 2 317
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,331评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,020评论 3 315
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,610评论 3 303
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,694评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 30,927评论 1 255
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,330评论 2 346
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 41,904评论 2 341