数据结构——并查集

目录

1、等价关系和等价类

2、并查集实现中的权衡

2.1、快速FIND实现(Quick FIND)

2.2、快速UNION实现(Quick UNION)

2.2.1、快速UNION实现(慢FIND)
2.2.2、快速UNION实现(快FIND)
2.2.3、利用路径压缩来实现快速UNION

2.3、小结

正文

1、等价关系和等价类

  • 假定S是集合,它包含元素和定义在集合上的关系R。对于集合中的每一对元素a,b∈S,aRb要么为真,要么为假。如果aRb为真,则a与b 相关,否则为 不相关。如果一个关系满足以下三种性质,则关系是 等价关系
    1)自反性:对于任意元素a∈S,aRa为真。
    2)对称性:对于任意两个元素a,b∈S,如果aRb为真,那么bRa也为真。
    3)传递性:对于任意三个元素a,b,c∈S,如果aRb为真,bRc为真,那么aRc也为真。

  • 【 例子】:铁路连接是一种等价关系。因为任何位置都能连接它自身,所以它是自反的。如果城市a与城市b之间有个连接线,那么城市b也能连接城市a,所以它是对称的。如果城市a连接城市b且城市b连接城市c,那么城市a也能连接城市c。

  • 元素a∈S的 等价类 是S的一个子集,该子集包含所有与a 相关 的元素。 等价类 对集合S产生一个分割,S中的每个成员都属于一个 等价类 中,那么判断aRb是否为真,需要判断两者是否属于同一个 等价类 中。

  • 任意两个 等价类 的交集为空,所以 等价类 有时候也叫 并查集,包括以下三个基本操作:
    1)创建一个等价类(MAKESET(X):创建包含元素X的新集合)。
    2)查找等价类(FIND(X):返回包含元素X的集合)。
    3)合并等价类(UNION(X,Y):通过合并元素X和Y来产生新集合,同时删除包含X和Y的原集合)。

2、并查集实现中的权衡

  • 初始时,假设输入n个集合,每个集合仅有一个元素。这说明初始表示所有关系都是假的(自反性除外)。每个集合都有不同元素,因此 Si∩Sj=空

  • 为添加关系aRb,需要首先检查a和b是否已经 相关 。可以通过在a和b上执行 FIND 操作来验证,并判断它们是否属于同一个 等价类 中。如果不在,那么就执行 UNION 操作。该操作将包含a和b的两个等价类 合并 到一个新的等价类,即创建集合 Sk=Si∪Sj,同时删除集合Si和Sj。有以下两种方法实现 FIND/UNION操作
    1)快速FIND实现(也叫Quick FIND)。
    2)快速UNION实现(也叫Quick UNION)。

2.1、快速FIND实现(Quick FIND)

  • 可以使用数组来实现,如下图所示2-1所示,假定所有元素都是按0~n-1编号,元素0的集合是3,元素2的集合是5,以此类推。


    图2-1 数组实现Quick FIND
  • FIND操作便只需要O(1)时间。为了执行 UNION(a,b)(假定a在集合i,b在集合j中),需要扫描整个数组,并将所有i中元素转移到j中,这需要花费 O(n) 时间。在最坏情况下,n-1个并集操作序列需要的时间为 O(n^2 )。如果有O(n^2)个FIND操作,那么平均时间复杂度为 O(1)。如果FIND操作很少,那么该时间复杂度就是不可接受的。

2.2、快速UNION实现(Quick UNION)

2.2.1、快速UNION实现(慢FIND)
  • 当且仅当元素在同一个集合时,FIND 操作才返回相同的值。在表示并查集时,主要目标是为每一组赋予不同的集合。可以通过 来实现,因为每一个元素只有一个 根结点,可以使用它作为集合。

  • 通过数组实现,对于每个元素,将保存元素的 双亲结点,为了区分根结点,假定数组根结点的双亲结点与其相同。定义如下操作:
    1)MAKESET(X):创建一个新集合,它只包含一个元素X,并在数组中更新X的双亲结点为X。这就意味着X的根结点是X。如图2-2所示。

    图2-2 MAKESET(X)

    2)UNION(X,Y):合并包含X和Y的两个集合,用合并后的集合替换这两个集合,并在此数组中将X的双亲结点更新为Y。如图2-3所示。
    图2-3 UNION(X,Y)

    3)FIND(X):返回元素X所在的集合,持续查找X的集合直至达到树的根结点。如图2-4所示。
    图2-4 FIND(X)

  • 例子:对于元素0~6,初始表示如图2-5所示:

    图2-5 初始图

    1)执行完UNION(5,6)后,如图2-6所示:
    图2-6 UNION(5,6)

    2) 执行完UNION(1,2)后,如图2-7所示:
    图2-7 UNION(1,2)

    3) 执行完UNION(0,2)后,如图2-8所示:
    图2-8 UNION(0,2)

    【这里的一个要点是,UNION操作只改变根结点的双亲结点而不改变集合中其他元素的双亲结点。由此,UNION操作的时间复杂度为 O(1),FIND(X)操作的时间复杂度与X在该树中的深度成 正比。最坏情况下,FIND操作的运行时间是O(n),m个连续的FIND操作需要O(mn)】

  • 代码实现:

    /// <summary>
    /// 快速UNION(慢FIND)
    /// </summary>
    public class DisjointSet {
        /// <summary>
        /// 集合
        /// </summary>
        public int[] S { get; set; }

        /// <summary>
        /// 集合中元素的个数
        /// </summary>
        public int size { get; set; }

        /// <summary>
        /// 初始化集合
        /// </summary>
        /// <param name="size"></param>
        public void MAKESET(int size) {
            S = new int[size];
            for (int i = size-1; i >=0; i--) {
                S[i] = i;
            }
        }

        /// <summary>
        /// FIND
        /// </summary>
        /// <param name="x"></param>
        /// <returns></returns>
        public int FIND(int x) {
            if (!(x >= 0 && x < size)) {
                return -1;
            }
            if (S[x] == x) {
                return x;
            }
            else {
                return FIND(S[x]);
            }
        }

        /// <summary>
        /// UNION
        /// </summary>
        /// <param name="root1"></param>
        /// <param name="root2"></param>
        public void UNION(int root1,int root2) {
            if (FIND(root1) == FIND(root2)) {
                return;
            }
            if (!((root1 >= 0 && root1 < size) && (root2 >= 0 && root2 < size))) {
                return;
            }
            S[root1] = root2;
        }
    }
2.2.2、快速UNION实现(快FIND)
  • 上述方法的主要问题是,在最坏情况下会得到一棵斜树,并且时间复杂度为O(n),有以下两种方式改进。
    1)基于大小的UNION(也叫基于重量的UNION):使较小的树作为较大树的一棵子树。
    2)基于高度的UNION(也叫基于秩的UNION):使高度较小的树作为高度较大的一棵子树。
1)基于大小的UNION
  • 前面的表示中,对于每个元素i,若该元素是 根元素,则存储i。而本方法则 存储树的大小的负值(即,如果树的大小为3,则根结点元素需要在数组中存储-3)。假定包含一个元素的集合大小为1,且存储为-1。图2-8的例子,用该方法后的表示如图2-9所示。
    图2-9 基于大小的UNION
  • 代码实现:
        /// <summary>
        /// UNION(基于大小)
        /// </summary>
        /// <param name="root1"></param>
        /// <param name="root2"></param>
        public void UNIONBySize(int root1,int root2) {
            if (FIND(root1) == FIND(root2)) {
                return;
            }
            if (S[root2] < S[root1]) {
                S[root2] += S[root1];
                S[root1] = root2; 
            }
            else {
                S[root1] += S[root2];
                S[root2] = root1;
            }
        }
2)基于高度的UNION
  • 与基于大小的UNION类似,本方法 存储树的高度的负值,假定只有一个元素的树的高度为1。图2-8的例子,用该方法后的表示如图2-10所示。
    图2-10 基于高度的UNION
  • 代码实现:
        /// <summary>
        /// UNION(基于高度)
        /// </summary>
        /// <param name="root1"></param>
        /// <param name="root2"></param>
        public void UNIONByHeight(int root1,int root2) {
            if (FIND(root1) == FIND(root2)) {
                return;
            }
            if (S[root2] < S[root1]) {
                S[root1] = root2;
            }
            else {
                if (S[root2] == S[root1]) {
                    S[root1]--;
                }
                S[root2] = root1;
            }
        }
3)比较基于大小的UNION和基于高度的UNION
  • 使用基于大小的UNION,任意结点的高度永远不会大于logn,当由于UNION操作使其高度增加时,它被放置在至少是原来 2倍 大小的树中。即它的高度最多是以 logn 倍增加的。FIND操作的时间复杂度为 O(logn),m次连续执行该操作需要 O(mlogn) 的时间。
  • 如果对于两棵相同高度的树进行UNION操作,树的高度会比之前的 高度增加1,否则就等于 高度最大 的那个。这就使得n个结点的树的高度增长的倍数 大于O(logn),m次连续执行该操作仍然需要 O(mlogn) 的时间。
2.2.3、利用路径压缩来实现快速UNION
  • FIND操作遍历从当前结点到根结点路径的一系列结点,通过将这些结点的每个 父指针直接指向根结点,可以使后面的FIND操作更高效,这个过程叫做 路径压缩

  • 对FIND函数,使用路径压缩的唯一改变是S[X]的值等于FIND函数的返回值。通过递归地寻找该结点集合的根结点,然后令X直接指向根结点。如图2-11所示。


    图2-11 路径压缩
  • 代码实现:

        /// <summary>
        /// 路径压缩FIND
        /// </summary>
        /// <param name="x"></param>
        /// <returns></returns>
        public int FIND2(int x) {
            if (!(x >= 0 && x < size)) {
                return -1;
            }
            if (S[x] <= 0) {
                return x;
            }
            else {
                S[x] = FIND2(S[x]);
                return S[x];
            }
        }

注意:路径压缩与基于大小的UNION兼容,但与基于高度的UNINO不兼容,因为没有有效的方法来改变树的高度

2.3、小结

  • 在包含n个对象的集合中执行m次的UNION-FIND操作,最坏情况的时间复杂度如下所示。
算法 最坏情况时间
快速FIND mn
快速UNION mn
基于大小/高度的UNION n+mlogn
路径压缩 n+mlogn
基于大小的UNION+路径压缩 (n+m)logn
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,937评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,503评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,712评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,668评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,677评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,601评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,975评论 3 396
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,637评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,881评论 1 298
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,621评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,710评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,387评论 4 319
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,971评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,947评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,189评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,805评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,449评论 2 342

推荐阅读更多精彩内容