分布式鼻祖2:Google File System 论文深入解析(上)

论文链接

阅读完这篇论文后,回答,描述一组事件导致客户端从GFS读到过期的数据的情况。

1 简介

为了满足 Google 迅速增长的数据处理需求,我们设计并实现了 Google 文件系统(Google File System –GFS)。GFS 与传统的分布式文件系统有着很多相同的设计目标,比如,性能、可伸缩性、可靠性以及可用性。
但是,我们的设计还基于我们对我们自己的应用的负载情况和技术环境的观察的影响,不管现在还是将来,GFS 和早期文件系统的假设都有明显的不同。所以我们重新审视了传统文件系统在设计上的折衷选择,衍生出了完全不同的设计思路。

首先,组件失效被认为是常态事件,而不是意外事件。GFS 包括几百甚至几千台普通的廉价设备组装的存储机器,同时被相当数量的客户机访问。GFS 组件的数量和质量导致在事实上,任何给定时间内都有可能发生某些组件无法工作,某些组件无法从它们目前的失效状态中恢复。我们遇到过各种各样的问题,比如应用程序 bug、操作系统的 bug、人为失误,甚至还有硬盘、内存、连接器、网络以及电源失效等造成的问题。所以,持续的监控、错误侦测、灾难冗余以及自动恢复的机制必须集成在 GFS 中。

其次,以通常的标准衡量,我们的文件非常巨大。数 GB 的文件非常普遍。每个文件通常都包含许多应用程序对象,比如 web 文档。当我们经常需要处理快速增长的、并且由数亿个对象构成的、数以 TB 的数据集时,采用管理数亿个 KB 大小的小文件的方式是非常不明智的,尽管有些文件系统支持这样的管理方式。
因此,设计的假设条件和参数,比如 I/O 操作和 Block 的尺寸都需要重新考虑。

第三,绝大部分文件的修改是采用在文件尾部追加数据,而不是覆盖原有数据的方式。对文件的随机写入操作在实际中几乎不存在。一旦写完之后,对文件的操作就只有读,而且通常是按顺序读。大量的数据符合这些特性,比如:数据分析程序扫描的超大的数据集;正在运行的应用程序生成的连续的数据流;存档的数据;由一台机器生成、另外一台机器处理的中间数据,这些中间数据的处理可能是同时进行的、也可能是后续才处理的。对于这种针对海量文件的访问模式,客户端对数据块缓存是没有意义的,数据的追加操作是性能优化和原子性保证的主要考量因素。

第四,应用程序和文件系统 API 的协同设计提高了整个系统的灵活性。比如,我们放松了对 GFS 一致性模型的要求,这样就减轻了文件系统对应用程序的苛刻要求,大大简化了 GFS 的设计。我们引入了原子性的记录追加操作,从而保证多个客户端能够同时进行追加操作,不需要额外的同步操作来保证数据的一致性。

本文后面还有对这些问题的细节的详细讨论。Google 已经针对不同的应用部署了多套 GFS 集群。最大的一个集群拥有超过 1000 个存储节点,超过300TB 的硬盘空间,被不同机器上的数百个客户端连续不断的频繁访问。

点评:组件失效是常态。文件大小很大,GB单位。大多数写都是发生在文件尾部。要适用于所需要的应用,根据应用需求来设计API

2 设计概述

2.1 设计预期

系统由许多廉价的普通组件组成,组件失效是一种常态。系统必须持续监控自身的状态,它必须将组件失效作为一种常态,能够迅速地侦测、冗余并恢复失效的组件。

系统存储一定数量的大文件。我们预期会有几百万文件,文件的大小通常在 100MB 或者以上。数个 GB大小的文件也是普遍存在,并且要能够被有效的管理。系统也必须支持小文件,但是不需要针对小文件做专门的优化。

系统的工作负载主要由两种读操作组成:大规模的流式读取和小规模的随机读取。大规模的流式读取通常一次读取数百 KB 的数据,更常见的是一次读取 1MB 甚至更多的数据。来自同一个客户机的连续操作通常是读取同一个文件中连续的一个区域。小规模的随机读取通常是在文件某个随机的位置读取几个 KB 数据。如果应用程序对性能非常关注,通常的做法是把小规模的随机读取操作合并并排序,之后按顺序批量读取,这样就避免了在文件中前后来回的移动读取位置。

系统的工作负载还包括许多大规模的、顺序的、数据追加方式的写操作。一般情况下,每次写入的数据的大小和大规模读类似。数据一旦被写入后,文件就很少会被修改了。系统支持小规模的随机位置写入操作,但是可能效率不彰。

系统必须高效的、行为定义明确的实现多客户端并行追加数据到同一个文件里的语意。我们的文件通常被用于“生产者-消费者”队列,或者其它多路文件合并操作。通常会有数百个生产者,每个生产者进程运行在一台机器上,同时对一个文件进行追加操作。使用最小的同步开销来实现的原子的多路追加数据操作是必不可少的。文件可以在稍后读取,或者是消费者在追加的操作的同时读取文件。

高性能的稳定网络带宽远比低延迟重要。我们的目标程序绝大部分要求能够高速率的、大批量的处理数据,极少有程序对单一的读写操作有严格的响应时间要求。

2.2 接口

GFS 提供了一套类似传统文件系统的 API 接口函数,虽然并不是严格按照 POSIX 等标准 API 的形式实现的。文件以分层目录的形式组织,用路径名来标识。我们支持常用的操作,如创建新文件、删除文件、打开文件、关闭文件、读和写文件。

另外,GFS 提供了快照和记录追加操作。快照以很低的成本创建一个文件或者目录树的拷贝。记录追加操作允许多个客户端同时对一个文件进行数据追加操作,同时保证每个客户端的追加操作都是原子性的。

2.3架构

一个 GFS 集群包含一个单独的 Master 节点3、多台 Chunk 服务器,并且同时被多个客户端访问,如图 1
所示。所有的这些机器通常都是普通的 Linux 机器,运行着用户级别(user-level)的服务进程。我们可以很容易的把 Chunk 服务器和客户端都放在同一台机器上,前提是机器资源允许,并且我们能够接受不可靠的应用程序代码带来的稳定性降低的风险。


image.png

GFS 存储的文件都被分割成固定大小的 Chunk。在 Chunk 创建的时候,Master 服务器会给每个 Chunk 分配一个不变的、全球唯一的 64 位的 Chunk 标识。Chunk 服务器把 Chunk 以 Linux 文件的形式保存在本地硬盘上,并且根据指定的 Chunk 标识和字节范围来读写块数据。出于可靠性的考虑,每个块都会复制到多个块服务器上。缺省情况下,我们使用 3 个存储复制节点,不过用户可以为不同的文件命名空间设定不同的复制级别。

Master 节点管理所有的文件系统元数据。这些元数据包括名字空间、访问控制信息、文件和 Chunk 的映射信息、以及当前 Chunk 的位置信息。Master 节点还管理着系统范围内的活动,比如,Chunk 租用管理、孤儿 Chunk的回收、以及 Chunk 在 Chunk 服务器之间的迁移。Master 节点使用心跳信息周期地和每个Chunk服务器通讯,发送指令到各个 Chunk 服务器并接收 Chunk 服务器的状态信息。

GFS 客户端代码以库的形式被链接到客户程序里。客户端代码实现了 GFS 文件系统的 API 接口函数、应用程序与 Master 节点和 Chunk 服务器通讯、以及对数据进行读写操作。客户端和 Master 节点的通信只获取元数据,所有的数据操作都是由客户端直接和 Chunk 服务器进行交互的。我们不提供 POSIX 标准的 API 的功
能,因此,GFS API 调用不需要深入到 Linux vnode 级别。

无论是客户端还是 Chunk 服务器都不需要缓存文件数据。客户端缓存数据几乎没有什么用处,因为大部分程序要么以流的方式读取一个巨大文件,要么工作集太大根本无法被缓存。无需考虑缓存相关的问题也简化了客户端和整个系统的设计和实现。Chunk 服务器不需要缓存文件数据的原因是,Chunk 以本地文件的方式保存,Linux 操作系统的文件系统缓存会把经常访问的数据缓存在内存中。

2.4 单一MASTER节点

单一的 Master 节点的策略大大简化了我们的设计。单一的 Master 节点可以通过全局的信息精确定位Chunk 的位置以及进行复制决策。另外,我们必须减少对 Master 节点的读写,避免 Master 节点成为系统的瓶颈。客户端并不通过 Master 节点读写文件数据。反之,客户端向 Master 节点询问它应该联系的 Chunk 服务器。
客户端将这些元数据信息缓存一段时间,后续的操作将直接和 Chunk 服务器进行数据读写操作。我们利用图 1 解释一下一次简单读取的流程。首先,客户端把文件名和程序指定的字节偏移,根据固定的 Chunk 大小,转换成文件的 Chunk 索引。

然后,它把文件名和 Chunk 索引发送给 Master 节点。Master 节点将相应的 Chunk 标识和副本的位置信息发还给客户端。客户端用文件名和 Chunk 索引作为 key 缓存这些信息。

之后客户端发送请求到其中的一个副本处,一般会选择最近的。请求信息包含了 Chunk 的标识和字节范围。在对这个 Chunk 的后续读取操作中,客户端不必再和 Master 节点通讯了,除非缓存的元数据信息过期或者文件被重新打开。实际上,客户端通常会在一次请求中查询多个 Chunk 信息,Master 节点的回应也可能包
含了紧跟着这些被请求的 Chunk 后面的 Chunk 的信息。在实际应用中,这些额外的信息在没有任何代价的情况下,避免了客户端和 Master 节点未来可能会发生的几次通讯。


image.png

2.5 CHUNK 的尺寸

Chunk 的大小是关键的设计参数之一。我们选择了 64MB,这个尺寸远远大于一般文件系统的 Block size。每个 Chunk 的副本都以普通 Linux 文件的形式保存在 Chunk 服务器上,只有在需要的时候才扩大。惰性空间分配策略避免了因内部碎片造成的空间浪费,内部碎片或许是对选择这么大的 Chunk 尺寸最具争议一点。

三个优点:

  1. 减少了通讯需求,因为只要问MASTER要1次CHUNK的位置,可以管64MB大小的文件读取的需求。
  2. 客户端可以对一个块进行多次操作,可以采用长时间的TCP来减少网络负载。
  3. 减少了MASTER保存元数据的量,可以允许MASTER把元数据全放进内存。

问题:
另一方面,即使配合惰性空间分配,采用较大的 Chunk 尺寸也有其缺陷。小文件包含较少的 Chunk,甚至只有一个 Chunk。当有许多的客户端对同一个小文件进行多次的访问时,存储这些 Chunk 的 Chunk 服务器就会变成热点。在实际应用中,由于我们的程序通常是连续的读取包含多个 Chunk 的大文件,热点还不是主
要的问题。

然而,当我们第一次把 GFS 用于批处理队列系统的时候,热点的问题还是产生了:一个可执行文件在GFS 上保存为 single-chunk 文件,之后这个可执行文件在数百台机器上同时启动。存放这个可执行文件的几个 Chunk 服务器被数百个客户端的并发请求访问导致系统局部过载。我们通过使用更大的复制参数来保存可
执行文件,以及错开批处理队列系统程序的启动时间的方法解决了这个问题。一个可能的长效解决方案是,在这种的情况下,允许客户端从其它客户端读取数据。

2.6 元数据

Master 服务器7存储 3 种主要类型的元数据,包括:文件和 Chunk 的命名空间、文件和 Chunk 的对应关系、每个 Chunk 副本的存放地点。所有的元数据都保存在 Master 服务器的内存中。前两种类型的元数据同时也会以记录变更日志的方式记录在操作系统的系统日志文件中,日志文件存储在本地磁盘上,同时日志会被复
制到其它的远程Master服务器上。采用保存变更日志的方式,我们能够简单可靠的更新 Master 服务器的状态,并且不用担心 Master 服务器崩溃导致数据不一致的风险。Master 服务器不会持久保存 Chunk 位置信息。Master服务器在启动时,或者有新的 Chunk 服务器加入时,向各个 Chunk 服务器轮询它们所存储的 Chunk 的信息。

2.6.1 内存中的数据结构

因为元数据保存在内存中,所以 Master 服务器的操作速度非常快。并且,Master 服务器可以在后台简单而高效的周期性扫描自己保存的全部状态信息。这种周期性的状态扫描也用于实现 Chunk 垃圾收集、在 Chunk服务器失效的时重新复制数据、通过 Chunk 的迁移实现跨 Chunk 服务器的负载均衡以及磁盘使用状况统计等
功能。4.3 和 4.4 章节将深入讨论这些行为。

将元数据全部保存在内存中的方法有潜在问题:Chunk 的数量以及整个系统的承载能力都受限于 Master服务器所拥有的内存大小。但是在实际应用中,这并不是一个严重的问题。Master 服务器只需要不到 64 个字节的元数据就能够管理一个 64MB 的 Chunk。由于大多数文件都包含多个 Chunk,因此绝大多数 Chunk 都是
满的,除了文件的最后一个 Chunk 是部分填充的。同样的,每个文件的在命名空间中的数据大小通常在 64字节以下,因为保存的文件名是用前缀压缩算法压缩过的。

即便是需要支持更大的文件系统,为 Master 服务器增加额外内存的费用是很少的,而通过增加有限的费用,我们就能够把元数据全部保存在内存里,增强了系统的简洁性、可靠性、高性能和灵活性。

2.6.2 Chunk 位置信息

Master 服务器并不保存持久化保存哪个 Chunk 服务器存有指定 Chunk 的副本的信息。Master 服务器只是在启动的时候轮询 Chunk 服务器以获取这些信息。Master 服务器能够保证它持有的信息始终是最新的,因为它控制了所有的 Chunk 位置的分配,而且通过周期性的心跳信息监控 Chunk 服务器的状态。

最初设计时,我们试图把 Chunk 的位置信息持久的保存在 Master 服务器上,但是后来我们发现在启动的时候轮询 Chunk 服务器,之后定期轮询更新的方式更简单。这种设计简化了在有 Chunk 服务器加入集群、离开集群、更名、失效、以及重启的时候,Master 服务器和 Chunk 服务器数据同步的问题。在一个拥有数百台
服务器的集群中,这类事件会频繁的发生。


image.png

可以从另外一个角度去理解这个设计决策:只有 Chunk 服务器才能最终确定一个 Chunk 是否在它的硬盘上。我们从没有考虑过在 Master 服务器上维护一个这些信息的全局视图,因为 Chunk 服务器的错误可能会导致 Chunk 自动消失(比如,硬盘损坏了或者无法访问了),亦或者操作人员可能会重命名一个 Chunk 服务器。


image.png

2.6.3 操作日志

操作日志包含了关键的元数据变更历史记录。这对 GFS 非常重要。这不仅仅是因为操作日志是元数据唯一的持久化存储记录,它也作为判断同步操作顺序的逻辑时间基线。文件和 Chunk,连同它们的版本(参考4.5 节),都由它们创建的逻辑时间唯一的、永久的标识。操作日志非常重要,我们必须确保日志文件的完整,确保只有在元数据的变化被持久化后,日志才对客户端是可见的。否则,即使 Chunk 本身没有出现任何问题,我们仍有可能丢失整个文件系统,或者丢失客户端最近的操作。所以,我们会把日志复制到多台远程机器,并且只有把相应的日志记录写入到本地以及远程机器的硬盘后,才会响应客户端的操作请求。Master 服务器会收集多个日志记录后批量处理,以减少写入磁盘和复制对系统整体性能的影响。
Master 服务器在灾难恢复时,通过重演操作日志把文件系统恢复到最近的状态。为了缩短 Master 启动的时间,我们必须使日志足够小。Master 服务器在日志增长到一定量时对系统状态做一次 Checkpoint,将所有的状态数据写入一个 Checkpoint 文件。在灾难恢复的时候,Master 服务器就通过从磁盘上读取这个
Checkpoint 文件,以及重演 Checkpoint 之后的有限个日志文件就能够恢复系统。Checkpoint 文件以压缩 B-树形势的数据结构存储,可以直接映射到内存,在用于命名空间查询时无需额外的解析。这大大提高了恢复速度,增强了可用性。

由于创建一个 Checkpoint 文件需要一定的时间,所以 Master 服务器的内部状态被组织为一种格式,这种格式要确保在 Checkpoint 过程中不会阻塞正在进行的修改操作。Master 服务器使用独立的线程切换到新的日志文件和创建新的 Checkpoint 文件。新的 Checkpoint 文件包括切换前所有的修改。对于一个包含数百万个
文件的集群,创建一个 Checkpoint 文件需要 1 分钟左右的时间。创建完成后,Checkpoint 文件会被写入在本地和远程的硬盘里。

Master 服务器恢复只需要最新的 Checkpoint 文件和后续的日志文件。旧的 Checkpoint 文件和日志文件可以被删除,但是为了应对灾难性的故障13,我们通常会多保存一些历史文件。Checkpoint 失败不会对正确性产生任何影响,因为恢复功能的代码可以检测并跳过没有完成的 Checkpoint 文件。

2.7 一致性模型

GFS 支持一个宽松的一致性模型,这个模型能够很好的支撑我们的高度分布的应用,同时还保持了相对简单且容易实现的优点。本节我们讨论 GFS 的一致性的保障机制,以及对应用程序的意义。我们也着重描述了 GFS 如何管理这些一致性保障机制,但是实现的细节将在本论文的其它部分讨论。

2.7.1 GFS 一致性保障机制

文件命名空间的修改(例如,文件创建)是原子性的。它们仅由 Master 节点的控制:命名空间锁提供了原子性和正确性(4.1 章)的保障;Master 节点的操作日志定义了这些操作在全局的顺序(2.6.3 章)。
数据修改后文件 region的状态取决于操作的类型、成功与否、以及是否同步修改。
什么是文件区,文件区就是在文件中的一小块内容。

表 1 总结了各种操作的结果。


image.png

如果所有客户端,无论从哪个副本读取,读到的数据都一样,那么我们认为文件 region 是“一致的”;
如果对文件的数据修改之后,region 是一致的,并且客户端能够看到写入操作全部的内容,那么这个 region是“已定义的”。

当一个数据修改操作成功执行,并且没有受到同时执行的其它写入操作的干扰,那么影响的 region 就是已定义的(隐含了一致性):所有的客户端都可以看到写入的内容。

并行修改操作成功完成之后,region 处于一致的、未定义的状态:所有的客户端看到同样的数据,但是无法读到任何一次写入操作写入的数据。通常情况下,文件 region 内包含了来自多个修改操作的、混杂的数据片段。

失败的修改操作导致一个 region 处于不一致状态(同时也是未定义的):不同的客户在不同的时间会看到不同的数据。后面我们将描述应用如何区分已定义和未定义的 region。应用程序没有必要再去细分未定义 region 的不同类型。

数据修改操作分为写入或者记录追加两种。写入操作把数据写在应用程序指定的文件偏移位置上。即使有多个修改操作并行执行时,记录追加操作至少可以把数据原子性的追加到文件中一次,但是偏移位置是由GFS 选择的(3.3 章)。
GFS 返回给客户端一个偏移量,表示了包含了写入记录的、已定义的 region 的起点。
另外,GFS 可能会在文件中间插入填充数据或者重复记录。这些数据占据的文件 region 被认定是不一致的,这些数据通常比用户数据小的多。

经过了一系列的成功的修改操作之后,GFS 确保被修改的文件 region 是已定义的,并且包含最后一次修改操作写入的数据。GFS 通过以下措施确保上述行为:(a) 对 Chunk 的所有副本的修改操作顺序一致(3.1章),(b)使用 Chunk 的版本号来检测副本是否因为它所在的 Chunk 服务器宕机(4.5 章)而错过了修改操作而导致其失效。失效的副本不会再进行任何修改操作,Master 服务器也不再返回这个 Chunk 副本的位置信息给客户端。它们会被垃圾收集系统尽快回收。
由于 Chunk 位置信息会被客户端缓存,所以在信息刷新前,客户端有可能从一个失效的副本读取了数据。

在缓存的超时时间和文件下一次被打开的时间之间存在一个时间窗,文件再次被打开后会清除缓存中与该文件有关的所有 Chunk 位置信息。而且,由于我们的文件大多数都是只进行追加操作的,所以,一个失效的副本通常返回一个提前结束的 Chunk 而不是过期的数据。当一个 Reader16重新尝试并联络 Master 服务器时,它就会立刻得到最新的 Chunk 位置信息。

即使在修改操作成功执行很长时间之后,组件的失效也可能损坏或者删除数据。GFS 通过 Master 服务器和所有 Chunk 服务器的定期“握手”来找到失效的 Chunk 服务器,并且使用 Checksum 来校验数据是否损坏(5.2 章)。一旦发现问题,数据要尽快利用有效的副本进行恢复(4.3 章)。只有当一个 Chunk 的所有副本在 GFS 检测到错误并采取应对措施之前全部丢失,这个 Chunk 才会不可逆转的丢失。在一般情况下 GFS 的反应时间是几分钟。即使在这种情况下,Chunk 也只是不可用了,而不是损坏了:应用程序会收到明确的错误信息而不是损坏的数据。

点评和思考

GFS 支持的文件数据修改数据包括两种:指定偏移值的数据写入(Write)以及数据追加(Record Append)。当写入时,指定的数据会被直接写入到客户端指定的偏移位置中,覆盖原有的数据。GFS 并未为该操作提供太多的一致性保证:如果不同的客户端并发地写入同一块文件区域,操作完成后这块区域的数据可能由各次写入的数据碎片所组成,即进入不确定的状态。

与写入操作不同,GFS 确保即便是在并发时,数据追加操作也是原子且 at least once(至少一次)的。操作完成后,GFS 会把实际写入的偏移值返回给客户端,该偏移值即代表包含所写入数据的确定的文件区域的起始位置。由于数据追加操作是 at least once 的,GFS 有可能会在文件中写入填充(padding)或是重复数据,但出现的概率不高。

在读取数据时,为了避免读入填充数据或是损坏的数据,数据在写入前往往会放入一些如校验和等元信息以用于验证其可用性,如此一来 GFS 的客户端 library 便可以在读取时自动跳过填充和损坏的数据。不过,鉴于数据追加操作的 at lease once 特性,客户端仍有可能读入重复的数据,此时只能由上层应用通过鉴别记录的唯一 ID 等信息来过滤重复数据了。

对应用的影响

GFS 的一致性模型是相对松散的,这就要求上层应用在使用 GFS 时能够适应 GFS 所提供的一致性语义。简单来讲,上层应用可以通过两种方式来做到这一点:更多使用追加操作而不是覆写操作;写入包含校验信息的数据。

青睐追加操作而不是覆写操作的原因是明显的:GFS 针对追加操作做出了显著的优化,这使得这种数据写入方式的性能更高,而且也能提供更强的一致性语义。尽管如此,追加操作 at least once 的特性仍使得客户端可能读取到填充或是重复数据,这要求客户端能够容忍这部分无效数据。一种可行的做法是在写入的同时为所有记录写入各自的校验和,并在读取时进行校验,以剔除无效的数据;如果客户端无法容忍重复数据,客户端也可以在写入时为每条记录写入唯一的标识符,以便在读取时通过标识符去除重复的数据。

我的思考和总结

  1. 基于GFS这篇论文还是非常长的,我打算分2部来讲解。
  2. 上半部分,我们已经可以发现GFS的一些特性。如大文件,节点失效是常态,需要高吞吐量而不是抵延迟。支持高效且原子的追加操作。
  3. 单一MASTER,和CHUNK SERVER和CHUNK 之间的关系。GFS 的 Master 负责维护整个集群的元数据,包括集群的 Namespace(命名空间,即文件元数据)以及 Chunk Lease 管理、无用 Chunk 回收等系统级操作。Chunk Server 除了保存 Chunk 以外也会周期地和 Master 通过心跳信号进行通信,Master 也借此得以收集每个 Chunk Server 当前的状态,并向其发送指令。
  4. GFS的元数据: 元数据保存在 Master 的内存中,使得Master 能够更加高效地扫描集群的元数据,以唤起 Chunk 回收、Chunk 均衡等系统级管理操作。
  5. 数据一致性。并发或失败时依然CHECKSUM
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,684评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,143评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,214评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,788评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,796评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,665评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,027评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,679评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 41,346评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,664评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,766评论 1 331
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,412评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,015评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,974评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,203评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,073评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,501评论 2 343

推荐阅读更多精彩内容

  • 摘要 GFS 文件系统,一个面向大规模数据密集型应用的、可伸缩的分布式文件系统。GFS 虽然运行在廉价的普遍硬件设...
    盗梦者_56f2阅读 1,088评论 0 1
  • Google文件系统 GFS是一个可扩展的分布式文件系统,用于大型的、分布式的、对大量数据进行访问的应用。它运行于...
    lucode阅读 3,565评论 0 2
  • 分布式文件系统的主要功能有两个:一个是存储文档、图像、视频之类的Blob类型数据;另外一个是作为分布式表格系统的持...
    olostin阅读 3,101评论 1 5
  • 众所周知,Hadoop的存储基础,HDFS分布式文件系统,是按照GFS的思想实现的。本文参考:Google Fil...
    SmileySure阅读 1,086评论 0 1
  • 稀雨疏断滴, 花香自飘习。 望之前目花, 忆在远之方。 译:稀疏疏的雨水从空中滴...
    娜悠冷颜阅读 135评论 0 4