题目链接
tag:
- Medium;
question:
Write an efficient algorithm that searches for a value in an m x n matrix. This matrix has the following properties:
- Integers in each row are sorted from left to right.
- The first integer of each row is greater than the last integer of the previous row.
Example 1:
Input:
matrix = [
[1, 3, 5, 7],
[10, 11, 16, 20],
[23, 30, 34, 50]
]
target = 3
Output: true
Example 2:
Input:
matrix = [
[1, 3, 5, 7],
[10, 11, 16, 20],
[23, 30, 34, 50]
]
target = 13
Output: false
思路:
如果我们按S型遍历该二维数组,可以得到一个有序的一维数组,那么我们可以用一次二分查找法,而关键就在于坐标的转换,如何把二维坐标和一维坐标转换是关键点,把一个长度为n的一维数组转化为mn的二维数组(mn = n)后,那么原一维数组中下标为i的元素将出现在二维数组中的[i/n][i%n]的位置,有了这一点,代码很好写出来了:
// binary search
class Solution {
public:
bool searchMatrix(vector<vector<int> > &matrix, int target) {
if (matrix.empty() || matrix[0].empty()) return false;
if (target < matrix[0][0] || target > matrix.back().back()) return false;
int m = matrix.size(), n = matrix[0].size();
int left = 0, right = m * n - 1;
while (left <= right) {
int mid = (left + right) / 2;
if (matrix[mid / n][mid % n] == target) return true;
else if (matrix[mid / n][mid % n] < target) left = mid + 1;
else right = mid - 1;
}
return false;
}
};
延伸:
倘若没有下一行的开头大于本行的最后一个元素的条件,则可以每次去掉一行或者一列逐步筛选,其实也是二分思想,代码如下:
class Solution {
public:
bool searchMatrix(vector<vector<int>>& matrix, int target) {
if (matrix.empty() || matrix[0].empty()) return false;
int m = matrix.size() - 1, n = matrix[0].size() - 1;
int row = 0, col = n;
while (row <= m && col >= 0) {
if (matrix[row][col] == target) return true;
else if (matrix[row][col] < target) ++row;
else --col;
}
return false;
}
};