分子育种重测序应用方案

[toc]

1. BSA(bulk segregant analysis)

针对表型差异明显,质量性状或主效基因控制性状。

检测到的两混池间DNA差异片段即为候选区域,可进一步定位到目标性状相关的基因或标记。

但是最好不要选择简化基因组进行BSA,因为简化基因组测序捕获到的基因组区域有限,若变异区域未被捕获,则与目标性状相关的基因将不能获取,因此全基因组重测序在BSA性状定位方面具有明显的优势。

image.png
美吉的分析

image.png

诺禾的分析

针对质量性状定位的方法:

  • MutMap
  • SHOREmap
  • MMAPPR

2. 遗传图谱构建和QTL定位

遗传图谱结合QTL定位是目前方案最成熟,效果最好的复杂数量性状定位方法之一。

利用高通量测序,可以获得海量的分子标记,利用分子标记进行高精度的遗传图谱构建,穷尽物种所有的重组事件,精确定位目标性状。利用基因组信息,可以直接筛选与性状相关联的分子标记和基因,从而省去复杂的图位克隆过程。

但是准确性肯定还是不如图位克隆,作为初定位还差不多(但是初定位图位克隆也不是很难啊,前提是开发好了足够的标记),而且成本很高。

除了基因(QTL)定位,遗传图谱还可以用于辅助基因组组装。


image.png
image.png

image.png

WGS和简化基因组测序都可进行遗传图谱构建和QTL定位,简化基因组测序甚至可以不依赖参考基因组:


image.png

其他QTL定位方法:QTG-Seq
数量性状基因定位。也是利用2个极端混池测序

image.png

3. GWAS和群体进化

利用自然群体的全基因组关联研究(GWAS)可以克服QTL分析的局限性,缩小候选区域,但GWAS假阳性比QTL分析高,因此两者联合可以在一定程度上弥补彼此的不足。

不过GWAS主要还是集中在群体进化研究:基于群体变异信息,全方位的解析群体的遗传多样性、遗传结构、基因交流情况、物种形成机制以及群体进化动态等生物学问题,从分子层面深入研究该物种的进化历程。


image.png

全基因组关联分析首先进行群体分层,分析了解材料的分层信息;然后进行连锁不平衡分析,连锁不平衡的水平可决定关联分析的精度、所选标记的数目;最后结合群体基因型和表型数据,使用基于混合线性模型进行全基因组关联分析,对分析所得的与目标性状强关联的位点进行基因功能注释。


美吉生物的分析

image.png

诺禾的分析

利用WGS或者简化基因组都可进行GWAS分析,但简化基因组的精度肯定会差些:


image.png

4.基因定位联合研究思路

  • 遗传图谱+GWAS
  • 遗传图谱+转录组
  • 遗传图+BSA
  • BSA+GWAS
  • BSA+转录组

5.BGI产品

华大把以上内容归到一个产品里,即动植物全基因组重测序,作为一个标准分析流程,该分析的内容都含有,其他的就要结合研究目的采用不同的取样、建库和测序策略了。


流程图

主要分析内容:
变异检测

各种变异在基因组上分布统计

群体结构分析
群体结构分析

选择分析
前提:群体有明显的亚群分化
选择分析

GWAS
image.png

ref: http://www.biomarker.com.cn/archives/15722
http://www.majorbio.com/product/20/14/72
http://www.bgitechsolutions.com/sequencing/38

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,684评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,143评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,214评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,788评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,796评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,665评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,027评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,679评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 41,346评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,664评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,766评论 1 331
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,412评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,015评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,974评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,203评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,073评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,501评论 2 343

推荐阅读更多精彩内容