【译】Swift算法俱乐部-最小生成树(加权图)

本文是对 Swift Algorithm Club 翻译的一篇文章。
Swift Algorithm Clubraywenderlich.com网站出品的用Swift实现算法和数据结构的开源项目,目前在GitHub上有18000+⭐️,我初略统计了一下,大概有一百左右个的算法和数据结构,基本上常见的都包含了,是iOSer学习算法和数据结构不错的资源。
🐙andyRon/swift-algorithm-club-cn是我对Swift Algorithm Club,边学习边翻译的项目。由于能力有限,如发现错误或翻译不妥,请指正,欢迎pull request。也欢迎有兴趣、有时间的小伙伴一起参与翻译和学习🤓。当然也欢迎加⭐️,🤩🤩🤩🤨🤪。
本文的翻译原文和代码可以查看🐙swift-algorithm-club-cn/Minimum Spanning Tree


最小生成树(加权图)(Minimum Spanning Tree (Weighted Graph))

这个主题有一篇辅导文章

连接的无向加权图的最小生成树(MST)具有来自原始图的边的子集,其将所有顶点连接在一起,没有任何循环并尽可能减少总边权重。 图中可以有多个MST。

有两种流行的算法来计算图形的MST - Kruskal算法Prim算法。 两种算法的总时间复杂度为O(ElogE),其中E是原始图的边数。

Kruskal算法

Sort the edges base on weight. Greedily select the smallest one each time and add into the MST as long as it doesn't form a cycle.
根据权重对边进行排序。每次贪婪地选择最小的一个并且只要它不形成循环就加入MST。
Kruskal的算法使用并查集 数据结构来检查是否有任何其他边导致循环。逻辑是将所有连接的顶点放在同一个集合中(在并查集的概念中)。如果来自新边的两个顶点不属于同一个集合,那么将该边添加到MST中是安全的。

下图演示了这个步骤:

Graph

准备

// Initialize the values to be returned and Union Find data structure.
var cost: Int = 0
var tree = Graph<T>()
var unionFind = UnionFind<T>()
for vertex in graph.vertices {

// Initially all vertices are disconnected.
// Each of them belongs to it's individual set.
  unionFind.addSetWith(vertex)
}

排序边:

let sortedEdgeListByWeight = graph.edgeList.sorted(by: { $0.weight < $1.weight })

一次取一个边并尝试将其插入MST。

for edge in sortedEdgeListByWeight {
  let v1 = edge.vertex1
  let v2 = edge.vertex2 
  
  // Same set means the two vertices of this edge were already connected in the MST.
  // Adding this one will cause a cycle.
  if !unionFind.inSameSet(v1, and: v2) {
    // Add the edge into the MST and update the final cost.
    cost += edge.weight
    tree.addEdge(edge)
    
    // Put the two vertices into the same set.
    unionFind.unionSetsContaining(v1, and: v2)
  }
}

Prim算法

Prim算法不会对所有边进行预排序。相反,它使用优先队列来维护正在运行的已排序的下一个可能的顶点。
从一个顶点开始,循环遍历所有未访问的邻居,并为每个邻居入队一对值 —— 顶点和将当前顶点连接到邻居的边的权重。每次贪婪地选择优先队列的顶部(权重值最小的那个)顶点,如果尚未访问已入队的邻居,则将边添加到最终的MST中。

下图演示了这个步骤:

Graph

准备

// Initialize the values to be returned and Priority Queue data structure.
var cost: Int = 0
var tree = Graph<T>()
var visited = Set<T>()

// In addition to the (neighbour vertex, weight) pair, parent is added for the purpose of printing out the MST later.
// parent is basically current vertex. aka. the previous vertex before neigbour vertex gets visited.
var priorityQueue = PriorityQueue<(vertex: T, weight: Int, parent: T?)>(sort: { $0.weight < $1.weight })

排序顶点:

priorityQueue.enqueue((vertex: graph.vertices.first!, weight: 0, parent: nil))
// Take from the top of the priority queue ensures getting the least weight edge.
while let head = priorityQueue.dequeue() {
  let vertex = head.vertex
  if visited.contains(vertex) {
    continue
  }

  // If the vertex hasn't been visited before, its edge (parent-vertex) is selected for MST.
  visited.insert(vertex)
  cost += head.weight
  if let prev = head.parent { // The first vertex doesn't have a parent.
    tree.addEdge(vertex1: prev, vertex2: vertex, weight: head.weight)
  }

  // Add all unvisted neighbours into the priority queue.
  if let neighbours = graph.adjList[vertex] {
    for neighbour in neighbours {
      let nextVertex = neighbour.vertex
      if !visited.contains(nextVertex) {
        priorityQueue.enqueue((vertex: nextVertex, weight: neighbour.weight, parent: vertex))
      }
    }
  }
}

翻译:Andy Ron
校对:Andy Ron

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,456评论 5 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,370评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,337评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,583评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,596评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,572评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,936评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,595评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,850评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,601评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,685评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,371评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,951评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,934评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,167评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,636评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,411评论 2 342

推荐阅读更多精彩内容