150 Evaluate Reverse Polish Notation 逆波兰表达式求值
Description:
Evaluate the value of an arithmetic expression in Reverse Polish Notation.
Valid operators are +, -, *, /. Each operand may be an integer or another expression.
Note:
Division between two integers should truncate toward zero.
The given RPN expression is always valid. That means the expression would always evaluate to a result and there won't be any divide by zero operation.
Example:
Example 1:
Input: ["2", "1", "+", "3", "*"]
Output: 9
Explanation: ((2 + 1) * 3) = 9
Example 2:
Input: ["4", "13", "5", "/", "+"]
Output: 6
Explanation: (4 + (13 / 5)) = 6
Example 3:
Input: ["10", "6", "9", "3", "+", "-11", "", "/", "", "17", "+", "5", "+"]
Output: 22
Explanation:
((10 * (6 / ((9 + 3) * -11))) + 17) + 5
= ((10 * (6 / (12 * -11))) + 17) + 5
= ((10 * (6 / -132)) + 17) + 5
= ((10 * 0) + 17) + 5
= (0 + 17) + 5
= 17 + 5
= 22
题目描述:
根据 逆波兰表示法,求表达式的值。
有效的运算符包括 +, -, *, / 。每个运算对象可以是整数,也可以是另一个逆波兰表达式。
说明:
整数除法只保留整数部分。
给定逆波兰表达式总是有效的。换句话说,表达式总会得出有效数值且不存在除数为 0 的情况。
示例 :
示例 1:
输入: ["2", "1", "+", "3", "*"]
输出: 9
解释: 该算式转化为常见的中缀算术表达式为:((2 + 1) * 3) = 9
示例 2:
输入: ["4", "13", "5", "/", "+"]
输出: 6
解释: 该算式转化为常见的中缀算术表达式为:(4 + (13 / 5)) = 6
示例 3:
输入: ["10", "6", "9", "3", "+", "-11", "", "/", "", "17", "+", "5", "+"]
输出: 22
解释:
该算式转化为常见的中缀算术表达式为:
((10 * (6 / ((9 + 3) * -11))) + 17) + 5
= ((10 * (6 / (12 * -11))) + 17) + 5
= ((10 * (6 / -132)) + 17) + 5
= ((10 * 0) + 17) + 5
= (0 + 17) + 5
= 17 + 5
= 22
逆波兰表达式:
逆波兰表达式是一种后缀表达式,所谓后缀就是指算符写在后面。
平常使用的算式则是一种中缀表达式,如 ( 1 + 2 ) * ( 3 + 4 ) 。
该算式的逆波兰表达式写法为 ( ( 1 2 + ) ( 3 4 + ) * ) 。
逆波兰表达式主要有以下两个优点:
去掉括号后表达式无歧义,上式即便写成 1 2 + 3 4 + * 也可以依据次序计算出正确结果。
适合用栈操作运算:遇到数字则入栈;遇到算符则取出栈顶两个数字进行计算,并将结果压入栈中。
思路:
用栈存储操作数, 也可以用数组代替
遇到数字压入栈, 否则弹出栈顶元素计算并把结果压入栈
最后返回栈顶元素
时间复杂度O(n), 空间复杂度O(n)
代码:
C++:
class Solution
{
public:
int evalRPN(vector<string>& tokens)
{
int s[(tokens.size() >> 1) + 1], index = 0;
for (auto &token : tokens)
{
if (token[0] == '+')
{
s[index - 2] += s[index - 1];
--index;
}
else if (token[0] == '-' and token.size() == 1)
{
s[index - 2] -= s[index - 1];
--index;
}
else if (token[0] == '*')
{
s[index - 2] *= s[index - 1];
--index;
}
else if (token[0] == '/')
{
s[index - 2] /= s[index - 1];
--index;
}
else s[index++] = stoi(token);
}
return s[0];
}
};
Java:
class Solution {
public int evalRPN(String[] tokens) {
Stack<Integer> stack = new Stack<>();
for (String token : tokens) {
switch (token) {
case "+":
stack.push(stack.pop() + stack.pop());
break;
case "-":
Integer minus = stack.pop();
stack.push(stack.pop() - minus);
break;
case "*":
stack.push(stack.pop() * stack.pop());
break;
case "/":
Integer div = stack.pop();
stack.push(stack.pop() / div);
break;
default:
stack.push(Integer.parseInt(token));
break;
}
}
return stack.peek();
}
}
Python:
class Solution:
def evalRPN(self, tokens: List[str]) -> int:
stack, m = [], {'+': lambda a, b: a + b, '-': lambda a, b: a - b, '*': lambda a, b: a * b, '/': lambda a, b: int(a / b)}
for i in tokens:
if i.isdigit() or (i[0] == '-' and len(i) > 1):
stack.append(int(i))
else:
a, b = stack.pop(), stack.pop()
stack.append(m[i](b, a))
return stack[-1]