4.CUT&Tag 基础分析&数据汇总2

  • 需要文件:seacr/;bam/
  • 加载R包:
library(GenomicRanges)
library(chromVAR)
  • 输出文件:file1 = left_join(peakN, peakOverlap, by = c("Histone", "peakType")) %>% mutate(peakReprodRate = peakReprod/peakN * 100);
    file2 = left_join(inPeakData, alignResult, by = c("Histone", "Replicate")) %>% mutate(frip = inPeakN/MappedFragNum_hg38 * 100)

Number of peaks called

peakN = c()
peakWidth = c()
peakType = c("top0.05", "top0.01")
for(hist in sampleList){
  histInfo = strsplit(hist, "_")[[1]]
  if(histInfo[1] != "IgG"){
    for(type in peakType){
      peakInfo = read.table(paste0(projPath, "\\seacr\\", hist, ".seacr_", type, ".peaks.stringent.bed"), header = FALSE, fill = TRUE)  %>% mutate(width = abs(V3-V2))
      peakN = data.frame(peakN = nrow(peakInfo), peakType = type, Histone = histInfo[1], Replicate = histInfo[2]) %>% rbind(peakN, .)
      peakWidth = data.frame(width = peakInfo$width, peakType = type, Histone = histInfo[1], Replicate = histInfo[2])  %>% rbind(peakWidth, .)
    }
  }
}
peakN %>% select(Histone, Replicate, peakType, peakN)

Reproducibility of the peak across biological replicates

histL = c("A", "W")
repL = paste0("rep", 1:2)
peakType = c("top0.05", "top0.01")
peakOverlap = c()
for(type in peakType){
  for(hist in histL){
    overlap.gr = GRanges()
    for(rep in repL){
      peakInfo = read.table(paste0(projPath, "\\seacr\\", hist, "_", rep, ".seacr_", type, ".peaks.stringent.bed"), header = FALSE, fill = TRUE)
      peakInfo.gr = GRanges(peakInfo$V1, IRanges(start = peakInfo$V2, end = peakInfo$V3), strand = "*")
      if(length(overlap.gr) >0){
        overlap.gr = overlap.gr[findOverlaps(overlap.gr, peakInfo.gr)@from]
      }else{
        overlap.gr = peakInfo.gr
      }
    }
    peakOverlap = data.frame(peakReprod = length(overlap.gr), Histone = hist, peakType = type) %>% rbind(peakOverlap, .)
  }
}
peakReprod = left_join(peakN, peakOverlap, by = c("Histone", "peakType")) %>% mutate(peakReprodRate = peakReprod/peakN * 100)
peakReprod %>% select(Histone, Replicate, peakType, peakN, peakReprodNum = peakReprod, peakReprodRate)

FRagment proportion in Peaks regions (FRiPs).

histL = c("A", "W")
repL = paste0("rep", 1:2)
peakType = c("top0.05", "top0.01")
bamDir = ("E:\\bam")
inPeakData = c()
## overlap with bam file to get count
for(type in peakType){
  for(hist in histL){
    for(rep in repL){
      peakRes = read.table(paste0(projPath, "\\seacr\\", hist, "_", rep, ".seacr_", type, ".peaks.stringent.bed"), header = FALSE, fill = TRUE)
      peak.gr = GRanges(seqnames = peakRes$V1, IRanges(start = peakRes$V2, end = peakRes$V3), strand = "*")
      bamFile = paste0(bamDir, "\\", hist, "_", rep, ".sortedbw.rmDup.bam")
      fragment_counts <- getCounts(bamFile, peak.gr, paired = TRUE, by_rg = FALSE, format = "bam")
      inPeakN = counts(fragment_counts)[,1] %>% sum
      inPeakData = rbind(inPeakData, data.frame(inPeakN = inPeakN, Histone = hist, Replicate = rep, peakType = type))
    }
  }
}
frip = left_join(inPeakData, alignResult, by = c("Histone", "Replicate")) %>% mutate(frip = inPeakN/MappedFragNum_hg38 * 100) #frip或许是比上清洗后的reads数
frip %>% select(Histone, Replicate, SequencingDepth, MappedFragNum_hg38, AlignmentRate_hg38, FragInPeakNum = inPeakN, FRiPs = frip)
fig7A = peakN %>% ggplot(aes(x = Histone, y = peakN, fill = Histone)) +
  geom_boxplot() +
  geom_jitter(aes(color = Replicate), position = position_jitter(0.15)) +
  facet_grid(~peakType) +
  scale_fill_viridis(discrete = TRUE, begin = 0.1, end = 0.55, option = "magma", alpha = 0.8) +
  scale_color_viridis(discrete = TRUE, begin = 0.1, end = 0.9) +
  theme_bw(base_size = 18) +
  ylab("Number of Peaks") +
  xlab("")

fig7B = peakWidth %>% ggplot(aes(x = Histone, y = width, fill = Histone)) +
  geom_violin() +
  facet_grid(Replicate~peakType) +
  scale_fill_viridis(discrete = TRUE, begin = 0.1, end = 0.55, option = "magma", alpha = 0.8) +
  scale_color_viridis(discrete = TRUE, begin = 0.1, end = 0.9) +
  scale_y_continuous(trans = "log", breaks = c(400, 3000, 22000)) +
  theme_bw(base_size = 18) +
  ylab("Width of Peaks") +
  xlab("")

fig7C = peakReprod %>% ggplot(aes(x = Histone, y = peakReprodRate, fill = Histone, label = round(peakReprodRate, 2))) +
  geom_bar(stat = "identity") +
  geom_text(vjust = 0.1) +
  facet_grid(Replicate~peakType) +
  scale_fill_viridis(discrete = TRUE, begin = 0.1, end = 0.55, option = "magma", alpha = 0.8) +
  scale_color_viridis(discrete = TRUE, begin = 0.1, end = 0.9) +
  theme_bw(base_size = 18) +
  ylab("% of Peaks Reproduced") +
  xlab("")

fig7D = frip %>% ggplot(aes(x = Histone, y = frip, fill = Histone, label = round(frip, 2))) +
  geom_boxplot() +
  geom_jitter(aes(color = Replicate), position = position_jitter(0.15)) +
  scale_fill_viridis(discrete = TRUE, begin = 0.1, end = 0.55, option = "magma", alpha = 0.8) +
  scale_color_viridis(discrete = TRUE, begin = 0.1, end = 0.9) +
  theme_bw(base_size = 18) +
  ylab("% of Fragments in Peaks") +
  xlab("")

ggarrange(fig7A, fig7B, fig7C, fig7D, ncol = 2, nrow=2, common.legend = TRUE, legend="bottom")
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,214评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,307评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,543评论 0 341
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,221评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,224评论 5 371
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,007评论 1 284
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,313评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,956评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,441评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,925评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,018评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,685评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,234评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,240评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,464评论 1 261
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,467评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,762评论 2 345

推荐阅读更多精彩内容