前言
View的绘制流程,其实也就是工作流程,指的就是Measure(测量)、Layout(布局)和Draw(绘制)。其中,measure用来测量View的宽和高,layout用来确定View的位置,draw则用来绘制View,这里解析的Android SDK为为Android 9.0版本。
Activity的构成
在了解绘制流程之前,我们首先要了解Activity的构成,我们都知道Activity要用setcontentView()
来加载布局,但是这个方法具体是怎么实现的呢,如下所示:
public void setContentView(@LayoutRes int layoutResID) {
getWindow().setContentView(layoutResID);
initWindowDecorActionBar();
}
public Window getWindow() {
return mWindow;
}
这里有一个getWindow()
,返回的是一个mWindow,那这个是什么呢,我们接在在Activity原来里的attach()
方法里可以看到如下代码:
final void attach(Context context, ActivityThread aThread,
Instrumentation instr, IBinder token, int ident,
Application application, Intent intent, ActivityInfo info,
CharSequence title, Activity parent, String id,
NonConfigurationInstances lastNonConfigurationInstances,
Configuration config, String referrer, IVoiceInteractor voiceInteractor,
Window window, ActivityConfigCallback activityConfigCallback) {
attachBaseContext(context);
mFragments.attachHost(null /*parent*/);
mWindow = new PhoneWindow(this, window, activityConfigCallback);
mWindow.setWindowControllerCallback(this);
mWindow.setCallback(this);
mWindow.setOnWindowDismissedCallback(this);
mWindow.getLayoutInflater().setPrivateFactory(this);
......
}
我们发现了原来mWindow实例化了PhoneWindow,那意思就是说Activity通过setcontentView()
加载布局的方法其实就是调用了PhoneWindow的setcontentView()
方法,那我们接着往下看PhoneWindow类里面具体是怎么样的。
@Override
public void setContentView(int layoutResID) {
// Note: FEATURE_CONTENT_TRANSITIONS may be set in the process of installing the window
// decor, when theme attributes and the like are crystalized. Do not check the feature
// before this happens.
if (mContentParent == null) {
installDecor(); //在这里
} else if (!hasFeature(FEATURE_CONTENT_TRANSITIONS)) {
mContentParent.removeAllViews();
}
if (hasFeature(FEATURE_CONTENT_TRANSITIONS)) {
final Scene newScene = Scene.getSceneForLayout(mContentParent, layoutResID,
getContext());
transitionTo(newScene);
} else {
mLayoutInflater.inflate(layoutResID, mContentParent);
}
mContentParent.requestApplyInsets();
final Callback cb = getCallback();
if (cb != null && !isDestroyed()) {
cb.onContentChanged();
}
mContentParentExplicitlySet = true;
}
点进PhoneWindow这个类我们可以知道这里的PhoneWindow是继承Window的,Window是一个抽象类。然后我们看里面的一些关键地方,比如installDecor()
方法,我们看看里面具体做了啥。
private void installDecor() {
mForceDecorInstall = false;
if (mDecor == null) {
mDecor = generateDecor(-1); //注释1
mDecor.setDescendantFocusability(ViewGroup.FOCUS_AFTER_DESCENDANTS);
mDecor.setIsRootNamespace(true);
if (!mInvalidatePanelMenuPosted && mInvalidatePanelMenuFeatures != 0) {
mDecor.postOnAnimation(mInvalidatePanelMenuRunnable);
}
} else {
mDecor.setWindow(this);
}
if (mContentParent == null) {
mContentParent = generateLayout(mDecor); //注释2
......
}
}
里面有一个标记注释为1的generateDecor()
方法,我们看看具体做了啥。
protected DecorView generateDecor(int featureId) {
// System process doesn't have application context and in that case we need to directly use
// the context we have. Otherwise we want the application context, so we don't cling to the
// activity.
Context context;
if (mUseDecorContext) {
Context applicationContext = getContext().getApplicationContext();
if (applicationContext == null) {
context = getContext();
} else {
context = new DecorContext(applicationContext, getContext());
if (mTheme != -1) {
context.setTheme(mTheme);
}
}
} else {
context = getContext();
}
return new DecorView(context, featureId, this, getAttributes());
}
发现创建了一个DecorView,而这个DecorView继承了Framelayout,DecorView就是Activity的根View,接着我们回到标记注释2的generateLayout()
方法,看看做了啥。
protected ViewGroup generateLayout(DecorView decor) {
......
// Inflate the window decor.
//根据不同情况加载不同的布局给layoutResource
int layoutResource;
int features = getLocalFeatures();
// System.out.println("Features: 0x" + Integer.toHexString(features));
if ((features & (1 << FEATURE_SWIPE_TO_DISMISS)) != 0) {
layoutResource = R.layout.screen_swipe_dismiss;
setCloseOnSwipeEnabled(true);
} else if ((features & ((1 << FEATURE_LEFT_ICON) | (1 << FEATURE_RIGHT_ICON))) != 0) {
if (mIsFloating) {
TypedValue res = new TypedValue();
getContext().getTheme().resolveAttribute(
R.attr.dialogTitleIconsDecorLayout, res, true);
layoutResource = res.resourceId;
} else {
layoutResource = R.layout.screen_title_icons;
}
// XXX Remove this once action bar supports these features.
removeFeature(FEATURE_ACTION_BAR);
// System.out.println("Title Icons!");
} else if ((features & ((1 << FEATURE_PROGRESS) | (1 << FEATURE_INDETERMINATE_PROGRESS))) != 0
&& (features & (1 << FEATURE_ACTION_BAR)) == 0) {
// Special case for a window with only a progress bar (and title).
// XXX Need to have a no-title version of embedded windows.
layoutResource = R.layout.screen_progress;
// System.out.println("Progress!");
} else if ((features & (1 << FEATURE_CUSTOM_TITLE)) != 0) {
// Special case for a window with a custom title.
// If the window is floating, we need a dialog layout
if (mIsFloating) {
TypedValue res = new TypedValue();
getContext().getTheme().resolveAttribute(
R.attr.dialogCustomTitleDecorLayout, res, true);
layoutResource = res.resourceId;
} else {
layoutResource = R.layout.screen_custom_title;
}
// XXX Remove this once action bar supports these features.
removeFeature(FEATURE_ACTION_BAR);
} else if ((features & (1 << FEATURE_NO_TITLE)) == 0) {
// If no other features and not embedded, only need a title.
// If the window is floating, we need a dialog layout
if (mIsFloating) {
TypedValue res = new TypedValue();
getContext().getTheme().resolveAttribute(
R.attr.dialogTitleDecorLayout, res, true);
layoutResource = res.resourceId;
} else if ((features & (1 << FEATURE_ACTION_BAR)) != 0) {
layoutResource = a.getResourceId(
R.styleable.Window_windowActionBarFullscreenDecorLayout,
R.layout.screen_action_bar);
} else {
layoutResource = R.layout.screen_title; //在这里!!!!!!!
}
// System.out.println("Title!");
} else if ((features & (1 << FEATURE_ACTION_MODE_OVERLAY)) != 0) {
layoutResource = R.layout.screen_simple_overlay_action_mode;
} else {
// Embedded, so no decoration is needed.
layoutResource = R.layout.screen_simple;
// System.out.println("Simple!");
}
......
mDecor.finishChanging();
return contentParent;
}
generateLayout()
方法代码比较长,这里截取了一部分,主要内容就是根据不同的情况加载不同的布局给layoutresource,在这里面有一个基础的XML,就是R.layout.screen_title。这个XMl文件里面有一个ViewStub和两个FrameLayout,ViewStub主要是显示Actionbar的,两个FarmeLayout分别显示TitleView和ContentView,也就是我们的标题和内容。看到这里我们也就知道,一个Activity包含一个Window对象,而Window是由PhoneWindow来实现的。PhoneWindow将DecorView作为整个应用窗口的根View,而这个DecorView又分为两个区域,分别就是TitleView和ContentView,平常所显示的布局就是在ContentView中。
如下图所示:
View的整体绘制流程路口
上一节讲了Activity的构成,最后讲到了DecorView的创建和加载它的资源,但是这个时候DecorView的内容还无法显示,因为还没用加载到Window中,接下来我们看它是怎么被加载到Window中。
还是老样子,DecorView创建完毕的时并且要加载到Window中,我们还是要先了解Activity的创建流程,当我们使用Activit的startActivity()
方法时,最终就是调用ActivityThread的handleLaunchActivity
方法来创建Activity。而绘制会从根视图ViewRootImpl的performTraversals()
方法开始从上到下遍历整个视图树,每个 View 控制负责绘制自己,而ViewGroup还需要负责通知自己的子 View进行绘制操作。视图操作的过程可以分为三个步骤,分别是测量(Measure)、布局(Layout)和绘制(Draw)。
ViewRootImpl是WindowManager和DecorView的纽带,View的三大流程均是通过这里来完成的,在ActivityThread中,当Activity对象被创建,会将DecorView加入到Window中,同时创建ViewRootImpl对象,并将ViewRootImpl对象和DecorView建立关联。
刚刚也说过了,View的绘制流程是从ViewRootImpl类的performTraversals()
方法开始的,它会依次调用performMeasure()
、performLayout()
和performDraw()
三个方法。其中在performTraversals()
调用measure()
方法,在measure()
方法又会调用onMeasure()
方法,在onMeasure()
方法中则会对所有的子元素进行measure过程,这个时候measure流程就从父容器传递到子元素中了,这样就完成了依次measure过程,接着子元素会重复父容器的measure过程,如此返回完成了整个View数的遍历。
理解MeasureSpec
为了理解View的测量过程,我们还需理解MeasureSpec,它在很大程度上决定了一个View的尺寸规格,而且也参与到了View的measure过程中。在测量过程中,系统会将View的LayoutParams根据父容器所施加的规则转换成对应的MeasureSpec,然后在根据这个measureSpec来测量出View的宽和高。
MeasureSpec是View的内部类,它代表哦啦一个32位的int值,高2位代表SpecMode,低30位代表SpecSize,SpecMode是指测量模式,而SpecSize是指在某种测量模式下的规格大小,如以下代码所示:
public static class MeasureSpec {
private static final int MODE_SHIFT = 30;
private static final int MODE_MASK = 0x3 << MODE_SHIFT;
......
public static final int UNSPECIFIED = 0 << MODE_SHIFT;
public static final int EXACTLY = 1 << MODE_SHIFT;
public static final int AT_MOST = 2 << MODE_SHIFT;
public static int makeMeasureSpec(@IntRange(from = 0, to = (1 << MeasureSpec.MODE_SHIFT) - 1) int size,
@MeasureSpecMode int mode) {
if (sUseBrokenMakeMeasureSpec) {
return size + mode;
} else {
return (size & ~MODE_MASK) | (mode & MODE_MASK);
}
}
public static int makeSafeMeasureSpec(int size, int mode) {
if (sUseZeroUnspecifiedMeasureSpec && mode == UNSPECIFIED) {
return 0;
}
return makeMeasureSpec(size, mode);
}
@MeasureSpecMode
public static int getMode(int measureSpec) {
//noinspection ResourceType
return (measureSpec & MODE_MASK);
}
public static int getSize(int measureSpec) {
return (measureSpec & ~MODE_MASK);
}
static int adjust(int measureSpec, int delta) {
final int mode = getMode(measureSpec);
int size = getSize(measureSpec);
if (mode == UNSPECIFIED) {
// No need to adjust size for UNSPECIFIED mode.
return makeMeasureSpec(size, UNSPECIFIED);
}
size += delta;
if (size < 0) {
Log.e(VIEW_LOG_TAG, "MeasureSpec.adjust: new size would be negative! (" + size +
") spec: " + toString(measureSpec) + " delta: " + delta);
size = 0;
}
return makeMeasureSpec(size, mode);
}
......
}
MeasureSpec通过SpecMode和SpecSize打包成一个int值来避免过多的对象内存分配,为了方便操作,其提供了打包和解包方法。SpecMode和SpecSize也是一个int值,一组SpecMode和SpecSize可以打包成一个MeasureSpec,而也可以通过解包得到SpecMode和SpecSize。这里说一下打包成的MeasureSpec是一个int值,不是这个类本身。
对于SpecMode,有三种类型:
UPSPECIFIED:父容器不对View有任何限制,要多大给多大,这种情况一般用于系统内部,表示一种测量状态。
EXACTLY:父容器已经检测出View所需要的精确大小,这个时候View的最终大小就是SpecSize所指定的值。它对应于LayoutParams中的match_parent和具体的数值这两种模式。
AT_MOST:父容器指定一个可用大小即SpecSize,View的大小不能大于这个值,具体是什么值要看不同View的具体实现。它对应于LayoutParams中的wrap_content。
Measure过程
Measure过程要分情况来看,如果只是原始的View,那么通过measure()
方法就完成了测量的过程。如果是一个ViewGroup,除了完成自己的测量过程外,还要遍历去调用子元素的measure()
,下面分两种情况进行讨论。
View的measure过程
View的measure过程就是会调用View的measure()
方法,它是一个final类型的方法,在measure()
方法还会调用View的onMeasure()
方法,我们看这个方法写了什么。
protected void onMeasure(int widthMeasureSpec, int heightMeasureSpec) {
setMeasuredDimension(getDefaultSize(getSuggestedMinimumWidth(), widthMeasureSpec),
getDefaultSize(getSuggestedMinimumHeight(), heightMeasureSpec));
}
代码很少,这里的setMeasuredDimension()
方法会设置View的宽和高的测量值,因此我们只要看getDefaultSize()
即可。
public static int getDefaultSize(int size, int measureSpec) {
int result = size;
int specMode = MeasureSpec.getMode(measureSpec);
int specSize = MeasureSpec.getSize(measureSpec);
switch (specMode) {
case MeasureSpec.UNSPECIFIED:
result = size;
break;
case MeasureSpec.AT_MOST:
case MeasureSpec.EXACTLY:
result = specSize;
break;
}
return result;
}
从源码可以看出,逻辑还是很简单的,对于我们来说,只需要看AT_MOST和EXACTLY这两种情况,简单理解,其实getDefaultSize()
返回的大小就是measureSpec中的specSize,而这个specSize就是View测量后的大小,这里多次提到测量后的大小,是因为View最终得大小是在layout阶段确定的,所以这里必须要区分,但几乎所有情况下View的测量大小和最终大小是相等的。
至于UNSPECIFIED这种情况,一般用于系统内部的测量过程,在这种情况下,View的大小为getDefaultSize()
的第一个参数size,即宽和高为getSuggestedMinimunWidth()
和getSuggestedMinimunHeight()
的返回值:
protected int getSuggestedMinimumWidth() {
return (mBackground == null) ? mMinWidth : max(mMinWidth, mBackground.getMinimumWidth());
}
这里就只分析getSuggestedMinimumWidth()
方法的实现,getSuggestedMinimunHeight()
和它的实现原理是一样的,从代码中可以看出,如果View没有设置背景,那么宽度就为mMinWidth,而mMinWidth对应android:Width这个属性所指定的值。如果不指定,那么mMinWidth则默认为0,如果设置了背景,则View的宽度为max(mMinWidth, mBackground.getMinimumWidth()。那mBackground.getMinimumWidth()
是什么呢?
public int getMinimumWidth() {
final int intrinsicWidth = getIntrinsicWidth();
return intrinsicWidth > 0 ? intrinsicWidth : 0;
}
可以看出,getMinimumWidth()
返回的就是Drawable的原始宽度,前提是这个Drawable有原始宽度,否则就返回0。这里说明一下,ShapeDrawable无原始宽和高,BitmapDrawab有原始宽和高。
从getDefaultSize可以看出,View的宽和高由specSize决定。直接继承View的自定义控件需要重写onMeasure()
方法并设置wrap_content时的自身大小,否则在布局中使用wrap_content就相当于match_parent。
ViewGroup的measure过程
对于ViewGroup来说,除了完成自己的mesaure过程以外,还会遍历去调用所有子元素的measure()
方法,各个子元素在递归的去执行这个过程,和View不同的是,ViewGroup时候是一个抽象类,因此它没有重写View的onMeasure()
,但是它提供了一个叫measureChildren()
的方法。
protected void measureChildren(int widthMeasureSpec, int heightMeasureSpec) {
final int size = mChildrenCount;
final View[] children = mChildren;
for (int i = 0; i < size; ++i) {
final View child = children[i];
if ((child.mViewFlags & VISIBILITY_MASK) != GONE) {
measureChild(child, widthMeasureSpec, heightMeasureSpec);
}
}
}
protected void measureChild(View child, int parentWidthMeasureSpec,
int parentHeightMeasureSpec) {
final LayoutParams lp = child.getLayoutParams();
final int childWidthMeasureSpec = getChildMeasureSpec(parentWidthMeasureSpec,
mPaddingLeft + mPaddingRight, lp.width);
final int childHeightMeasureSpec = getChildMeasureSpec(parentHeightMeasureSpec,
mPaddingTop + mPaddingBottom, lp.height);
child.measure(childWidthMeasureSpec, childHeightMeasureSpec);
}
measureChildren()
会调用measureChild()
方法,在measureChild()
方法里,就是去除子元素的LayoutParams,然后在通过getChildMeasureSpec()
来创建子元素的MeasureSpec,接着将MeasureSpec直接传递给View的measure()
方法进行测量。
我们知道,ViewGroup并没有定义其测量的具体过程,这是因为ViewGroup是一个抽象类,其测量过程的onMeasure()
方法需要由各个子类去具体实现,比如LinearLayout、RelativeLayout等,ViewGroup不做统一的onMeasure()
实现,是因为不同的ViewGroup子类有不同的布局特性,导致它们的测量细节个不不相同,比如LinearLayout和RelativeLayout这两者的布局特性显然不同,因为无法做统一,以后会专门写一篇文章来讲解每个layout的布局是怎么实现的。
Layout过程
Layout的作用就是ViewGroup用来确定子元素的位置,当ViewGroup的位置被确定后,它在onLayout中会遍历所有的子元素并调用layout()
方法,在layout()
方法中onLayout()
方法又会被调用。layout过程相比measure过程就简单多了,layout()
方法确定View本身的位置,而onLayout()
方法则会确定所有子元素的位置,先看View的layout()
方法。
public void layout(int l, int t, int r, int b) {
if ((mPrivateFlags3 & PFLAG3_MEASURE_NEEDED_BEFORE_LAYOUT) != 0) {
onMeasure(mOldWidthMeasureSpec, mOldHeightMeasureSpec);
mPrivateFlags3 &= ~PFLAG3_MEASURE_NEEDED_BEFORE_LAYOUT;
}
int oldL = mLeft;
int oldT = mTop;
int oldB = mBottom;
int oldR = mRight;
boolean changed = isLayoutModeOptical(mParent) ?
setOpticalFrame(l, t, r, b) : setFrame(l, t, r, b);
if (changed || (mPrivateFlags & PFLAG_LAYOUT_REQUIRED) == PFLAG_LAYOUT_REQUIRED) {
onLayout(changed, l, t, r, b);
if (shouldDrawRoundScrollbar()) {
if(mRoundScrollbarRenderer == null) {
mRoundScrollbarRenderer = new RoundScrollbarRenderer(this);
}
} else {
mRoundScrollbarRenderer = null;
}
mPrivateFlags &= ~PFLAG_LAYOUT_REQUIRED;
ListenerInfo li = mListenerInfo;
if (li != null && li.mOnLayoutChangeListeners != null) {
ArrayList<OnLayoutChangeListener> listenersCopy =
(ArrayList<OnLayoutChangeListener>)li.mOnLayoutChangeListeners.clone();
int numListeners = listenersCopy.size();
for (int i = 0; i < numListeners; ++i) {
listenersCopy.get(i).onLayoutChange(this, l, t, r, b, oldL, oldT, oldR, oldB);
}
}
}
final boolean wasLayoutValid = isLayoutValid();
mPrivateFlags &= ~PFLAG_FORCE_LAYOUT;
mPrivateFlags3 |= PFLAG3_IS_LAID_OUT;
if (!wasLayoutValid && isFocused()) {
mPrivateFlags &= ~PFLAG_WANTS_FOCUS;
if (canTakeFocus()) {
// We have a robust focus, so parents should no longer be wanting focus.
clearParentsWantFocus();
} else if (getViewRootImpl() == null || !getViewRootImpl().isInLayout()) {
// This is a weird case. Most-likely the user, rather than ViewRootImpl, called
// layout. In this case, there's no guarantee that parent layouts will be evaluated
// and thus the safest action is to clear focus here.
clearFocusInternal(null, /* propagate */ true, /* refocus */ false);
clearParentsWantFocus();
} else if (!hasParentWantsFocus()) {
// original requestFocus was likely on this view directly, so just clear focus
clearFocusInternal(null, /* propagate */ true, /* refocus */ false);
}
// otherwise, we let parents handle re-assigning focus during their layout passes.
} else if ((mPrivateFlags & PFLAG_WANTS_FOCUS) != 0) {
mPrivateFlags &= ~PFLAG_WANTS_FOCUS;
View focused = findFocus();
if (focused != null) {
// Try to restore focus as close as possible to our starting focus.
if (!restoreDefaultFocus() && !hasParentWantsFocus()) {
// Give up and clear focus once we've reached the top-most parent which wants
// focus.
focused.clearFocusInternal(null, /* propagate */ true, /* refocus */ false);
}
}
}
if ((mPrivateFlags3 & PFLAG3_NOTIFY_AUTOFILL_ENTER_ON_LAYOUT) != 0) {
mPrivateFlags3 &= ~PFLAG3_NOTIFY_AUTOFILL_ENTER_ON_LAYOUT;
notifyEnterOrExitForAutoFillIfNeeded(true);
}
}
首先会通过setFrame()
方法来设定View的四个顶点的位置,即初始化mLeft、mRight、mTop和mBottom这四个值,View的四个顶点一旦确定,那么View在父容器的位置也就确定了。接着就会调用onLayout()
方法,这个方法的用途是父容器确定子元素的位置,和onMeasure()
类似,onLayout()
的具体实现同样和具体的布局有关,所以View和ViewGroup都没有真正实现onLayout()
方法。
Draw过程
Draw过程就简单很多了,作用就是将View会知道屏幕上面。View的绘制过程遵循着如下几步。
(1)background.draw(canvas)
- 绘制背景
(2)onDraw()
- 绘制自己
(3)dispatchDraw()
- 绘制children
(4)onDrawScrollBars()
- 绘制装饰
绘制流程从ViewRootImpl的performDraw()
开始,performDraw()
方法在类 ViewRootImpl内,其核心代码如下:
private void performDraw() {
boolean canUseAsync = draw(fullRedrawNeeded);
}
private boolean draw(boolean fullRedrawNeeded) {
...
if (!drawSoftware(surface, mAttachInfo, xOffset, yOffset,
scalingRequired, dirty, surfaceInsets)) {
return false;
}
}
private boolean drawSoftware(Surface surface, AttachInfo attachInfo, int xoff, int yoff,
boolean scalingRequired, Rect dirty, Rect surfaceInsets) {
...
mView.draw(canvas);
...
}
然后查看View的draw()
方法的源代码:
public void draw(Canvas canvas) {
final int privateFlags = mPrivateFlags;
final boolean dirtyOpaque = (privateFlags & PFLAG_DIRTY_MASK) == PFLAG_DIRTY_OPAQUE &&
(mAttachInfo == null || !mAttachInfo.mIgnoreDirtyState);
mPrivateFlags = (privateFlags & ~PFLAG_DIRTY_MASK) | PFLAG_DRAWN;
/*
* Draw traversal performs several drawing steps which must be executed
* in the appropriate order:
*
* 1. Draw the background
* 2. If necessary, save the canvas' layers to prepare for fading
* 3. Draw view's content
* 4. Draw children
* 5. If necessary, draw the fading edges and restore layers
* 6. Draw decorations (scrollbars for instance)
*/
// Step 1, draw the background, if needed
int saveCount;
if (!dirtyOpaque) {
drawBackground(canvas);
}
// skip step 2 & 5 if possible (common case)
final int viewFlags = mViewFlags;
boolean horizontalEdges = (viewFlags & FADING_EDGE_HORIZONTAL) != 0;
boolean verticalEdges = (viewFlags & FADING_EDGE_VERTICAL) != 0;
if (!verticalEdges && !horizontalEdges) {
// Step 3, draw the content
if (!dirtyOpaque) onDraw(canvas);
// Step 4, draw the children
dispatchDraw(canvas); //这里进行传递的实现!!!
drawAutofilledHighlight(canvas);
// Overlay is part of the content and draws beneath Foreground
if (mOverlay != null && !mOverlay.isEmpty()) {
mOverlay.getOverlayView().dispatchDraw(canvas);
}
// Step 6, draw decorations (foreground, scrollbars)
onDrawForeground(canvas);
// Step 7, draw the default focus highlight
drawDefaultFocusHighlight(canvas);
if (debugDraw()) {
debugDrawFocus(canvas);
}
// we're done...
return;
}
......
}
View的绘制过程的传递是通过dispatchDraw()
来实现的,dispatchDraw()
会遍历调用所有子元素的draw()
方法,如此一来draw事件就一层层的传递了下去。这里补充一下View还有一个特殊的方法叫setWillNotDraw()
,代码如下:
/**
* If this view doesn't do any drawing on its own, set this flag to
* allow further optimizations. By default, this flag is not set on
* View, but could be set on some View subclasses such as ViewGroup.
*
* Typically, if you override {@link #onDraw(android.graphics.Canvas)}
* you should clear this flag.
*
* @param willNotDraw whether or not this View draw on its own
*/
public void setWillNotDraw(boolean willNotDraw) {
setFlags(willNotDraw ? WILL_NOT_DRAW : 0, DRAW_MASK);
}
如果一个View不需要绘制任何内容,那么设置这个标记位为true以后,系统会进行相应的优化,默认情况下,View没有启用这个优化标记位,但是ViewGroup会默认启用这个标记位。这个标记位对开发的实际意义是:当我们的自定义控件继承与ViewGroup并且本身不具备绘制功能时,就可以开启这个标记位进行后续的优化。当然如果确定ViewGroup要绘制内容的话,就要关闭这个标记位。
参考
- Android View 的绘制流程
- Activity的构成
- [任玉刚]Android开发艺术探索
- [刘望舒]Android进阶之光