设计按类别分类的 Amazon 销售排名

设计按类别分类的 Amazon 销售排名 原文链接

1.描述使用场景和约束

使用场景:

  • 按照分类计算上周/上月热销榜单
  • 用户主要查看近几周的热销榜单

假设和约束:

  • 流量不均衡
  • 同一商品可能同时属于不同种类
  • 种类只有一个层级,没有上下关系
  • 榜单需要每小时更新
  • 1亿件商品
  • 1000个种类
  • 每月10亿笔交易记录
  • 每月1000亿次读请求

容量估算:
单条交易记录:

  • created_at 5字节
  • product_id 8字节
  • category_id 4字节
  • seller_id 8字节
  • buyer_id 8字节
  • quantity 4字节
  • total_price 5字节
    共计40字节

每月40GB的交易记录数据,每秒400次交易,每秒4000次读请求

2.创建系统设计图

系统总体设计图

3.设计关键组件

使用场景:计算上周不同种类的热销榜单
假设交易原始数据结构如下:

timestamp   product_id  category_id    qty     total_price   seller_id    buyer_id
t1          product1    category1      2       20.00         1            1
t2          product1    category2      2       20.00         2            2
t2          product1    category2      1       10.00         2            3
t3          product2    category1      3        7.00         3            4
t4          product3    category2      7        2.00         4            5
t5          product4    category1      1        5.00         5            6
...

排行系统可以抽取交易原始数据,使用MapReduce模型计算之后输出结果到sales_rank数据库。
其中MapReduce步骤如下:

  1. 将数据按(category, product_id), sum(quantity)的格式取出来
  2. 进行分布式排序:
class SalesRanker(MRJob):

    def within_past_week(self, timestamp):
        """Return True if timestamp is within past week, False otherwise."""
        ...

    def mapper(self, _ line):
        """Parse each log line, extract and transform relevant lines.

        Emit key value pairs of the form:

        (category1, product1), 2
        (category2, product1), 2
        (category2, product1), 1
        (category1, product2), 3
        (category2, product3), 7
        (category1, product4), 1
        """
        timestamp, product_id, category_id, quantity, total_price, seller_id, \
            buyer_id = line.split('\t')
        if self.within_past_week(timestamp):
            yield (category_id, product_id), quantity

    def reducer(self, key, value):
        """Sum values for each key.

        (category1, product1), 2
        (category2, product1), 3
        (category1, product2), 3
        (category2, product3), 7
        (category1, product4), 1
        """
        yield key, sum(values)

    def mapper_sort(self, key, value):
        """Construct key to ensure proper sorting.

        Transform key and value to the form:

        (category1, 2), product1
        (category2, 3), product1
        (category1, 3), product2
        (category2, 7), product3
        (category1, 1), product4

        The shuffle/sort step of MapReduce will then do a
        distributed sort on the keys, resulting in:

        (category1, 1), product4
        (category1, 2), product1
        (category1, 3), product2
        (category2, 3), product1
        (category2, 7), product3
        """
        category_id, product_id = key
        quantity = value
        yield (category_id, quantity), product_id

    def reducer_identity(self, key, value):
        yield key, value

    def steps(self):
        """Run the map and reduce steps."""
        return [
            self.mr(mapper=self.mapper,
                    reducer=self.reducer),
            self.mr(mapper=self.mapper_sort,
                    reducer=self.reducer_identity),
        ]

输出结果如下:

(category1, 1), product4
(category1, 2), product1
(category1, 3), product2
(category2, 3), product1
(category2, 7), product3

排序结果表sales_rank结构如下:

id int NOT NULL AUTO_INCREMENT
category_id int NOT NULL
total_sold int NOT NULL
product_id int NOT NULL
PRIMARY KEY(id)
FOREIGN KEY(category_id) REFERENCES Categories(id)
FOREIGN KEY(product_id) REFERENCES Products(id)

可以在idcategory_idproduct_id上创建联合索引来提高查询效率。
使用场景:用户浏览过去几周的热销排行榜
主要是针对sales_rank表的查询,针对热点分类的数据,可以采用cache来提高读请求效率。

4.完善设计

最终设计图
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 202,905评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,140评论 2 379
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 149,791评论 0 335
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,483评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,476评论 5 364
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,516评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,905评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,560评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,778评论 1 296
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,557评论 2 319
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,635评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,338评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,925评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,898评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,142评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,818评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,347评论 2 342

推荐阅读更多精彩内容