EM算法系列(五)-三硬币问题

整理自李航老师的《统计学习方法》一书

1、引言

概率模型有时既含有观测变量,又含有隐变量或潜在变量,如果概率模型的变量都是观测变量,那么给定数据,可以直接用极大似然估计法,或贝叶斯估计法估计模型参数,但是,当模型中含有隐变量时,就不能简单的使用这些方法。EM算法就是含有隐变量的概率模型参数的极大似然估计法,或极大后验概率估计法。

2、三硬币模型描述

三硬币问题是这样的:
假设有三枚硬币,分别记为A、B、C。这些硬币正面的概率分别为π,p,q,进行如下的抛硬币实验:先掷硬币A,根据其结果选出硬币B或者硬币C,正面选硬币B,反面选硬币C,然后掷选出的硬币,掷硬币的记过,出现正面记作1,出现反面记作0,独立地重复n次实验(这里n=10),然后观测结果如下:

1,1,0,1,0,0,1,0,1,1

假设只能观测到掷硬币的结果,不能观测掷硬币的过程,问如何估计三硬币正面出现的概率,即三硬币模型的参数π,p,q。

3、三硬币问题表示

三硬币模型可以写作:



这里随机变量y是观测变量,表示一次实验观测的结果是1或0,随机变量z是隐变量,表示未观测到的掷硬币A的结果,θ=(π,p,q)是模型参数,这一模型是以上数据的生成模型。再提醒一次,随机变量y的数据可以观测,随机变量z的数据不可观测。上式的意思即在θ的前提下出现y的概率等于在θ的前提下y和z的联合分布中y的边缘分布。

将观测数据表示为Y,未观测数据表示为Z,则观测数据的似然函数是:



在该问题中,似然函数展开为



考虑求模型参数θ=(π,p,q)的极大似然估计,即:

这个问题没有解析解,只有通过迭代方法求解,EM算法就是可以用于求解这个问题的一个迭代算法,下面给出求解这个问题的EM算法过程。

4、EM算法求解三硬币模型

EM算法首先选取参数的初值,然后通过下面的步骤迭代计算参数的估计址,直到收敛为止。EM算的第i+1次迭代过程如下:


我们带入具体的数值:


选取不同的初值,最后得到的收敛结果可能是不一样的,不信你可以试一下。

5、EM算法步骤

一般的,用Y表示观测随机变量的数据,Z表示隐随机变量的数据,Y和Z连在一起称为完全数据,只有观测数据Y称为不完全数据,假设给定观测数据Y,其概率分布为P(Y|θ),那么不完全数据的似然函数就是P(Y|θ),对数似然函数是L(θ) = log(P(Y|θ)),假设Y和Z的联合概率分布是P(Y,Z|θ),那么完全数据的对数似然函数是logP(Y,Z|θ)。

EM算法通过迭代求L(θ) = log(P(Y|θ))的极大似然估计,每次迭代包括两步:E步,求期望,M步,求最大化,下面介绍EM算法的步骤:



最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,723评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,485评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,998评论 0 344
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,323评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,355评论 5 374
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,079评论 1 285
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,389评论 3 400
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,019评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,519评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,971评论 2 325
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,100评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,738评论 4 324
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,293评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,289评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,517评论 1 262
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,547评论 2 354
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,834评论 2 345

推荐阅读更多精彩内容