从矩阵来看Android中的一些动画变换

个人博客: http://zhangsunyucong.top


开头

这篇博客,是参考了文章:Android Matrix,这篇文章有具体的分析过程和android实例。我只是参考和根据自己的理解写的。

在Android中,我们可以从数学的角度来看颜色和动画的变换。这里会从矩阵变换的角度来理解平移,旋转,缩放,对称的变换。

这些变换的完成实际上,是操作一个3X3的矩阵的。而这四种基本变换与操作和这个矩阵有什么样的关系呢?下面会分析。

图片

在Android中,已经为每种变换提供了pre、set和post三种操作方式。

set 用于设置Matrix中的值。
pre 是先乘,因为矩阵的乘法不满足交换律,因此先乘、后乘必须要严格区分。先乘相当于矩阵运算中的右乘。
post 是后乘,因为矩阵的乘法不满足交换律,因此先乘、后乘必须要严格区分。后乘相当于矩阵运算中的左乘。

另外,除平移变换(Translate)外,旋转变换(Rotate)、缩放变换(Scale)和错切变换(Skew)都可以围绕一个中心点来进行,如果不指定,在默认情况下是围绕(0, 0)来进行相应的变换的。

平移变换

图片

假设坐标系中有A和B两个点,从A平移到B点,它们之间的关系上图所示。

在x和y轴的移动增量分别是:


图片

则易得:


图片

它的矩阵表示为:
图片

旋转变换

1、围绕坐标原点旋转
图片

由A点顺时针旋转一定角度到B点,如图所示。

由图易知:


图片

由上面四个式子,可得:


图片

矩阵表示,得:
图片

旋转变换

2、围绕某点旋转

假设旋转点是:


图片

顺时针旋转,结合1、上面的推导结果,可以得到矩阵:


图片

可以化为:
图片

可知,围绕某一点进行旋转变换,可以分成3个步骤,即首先将坐标原点移至该点,然后围绕新的坐标原点进行旋转变换,再然后将坐标原点移回到原先的坐标原点。

缩放变换

A点的x,y坐标分别放大a,b倍。则有一下关系:


图片

用三维矩阵表示为:


图片

对称变换

1、如果对称轴是x轴,则有:


图片

用三维矩阵表示为:


图片

2、如果对称轴是y轴,则有:


图片

用三维矩阵表示为:


图片

3、如果对称轴是y = x轴,如图


图片

由等腰直角三角形可知:


图片

已知中点在对称轴上,由中点坐标公式,易得:
图片

联合两式子,2式先乘以2,再两式相加和相减,可得:


图片

用三维矩阵表示为:
图片

4、如果对称轴是y = -x轴。
同理,易推导得:
图片

5、如果对称轴是y = kx时。如图

图片

由图易知:


图片

则有:


图片

由直线的斜率公式,可得:
图片

中点坐标在直线上,结合中点坐标公式,易得:


图片

由上面两式,可求得:
图片

用三维矩阵表示为:
图片

k为任意实数,可以取特殊的值,验证前面对称推导的结果。k为1或者-1时,k为0时,k为无穷大时等等。

6、如果对称轴是y = kx + b时

只需要在5的基础上增加两次平移变换即可,即先将坐标原点移动到(0, b),然后做上面的关于y = kx的对称变换,再然后将坐标原点移回到原来的坐标原点即可。用矩阵表示大致是这样的:


图片
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 205,236评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,867评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,715评论 0 340
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,899评论 1 278
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,895评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,733评论 1 283
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,085评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,722评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,025评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,696评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,816评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,447评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,057评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,009评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,254评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,204评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,561评论 2 343

推荐阅读更多精彩内容