GCD的源码在我看来,一直是iOS源码中最晦涩难懂一种,因为涉及到太多的宏定义和结构定义,并且没有多少关于GCD源码的文章作为参考,我只能根据自己的理解来粗略进行分析,如果有哪些错误或者不足之处,希望以后看到本篇文章的大佬能够留言指出,谢谢!
一. 从打印开始
我们先来看一段常写代码,并分析其属性
- (void)testQueue{
dispatch_queue_t serialQueue = dispatch_queue_create("serialQueue", DISPATCH_QUEUE_SERIAL);
NSLog(@"serialQueue:%@",serialQueue);
dispatch_queue_t concurrentQueue = dispatch_queue_create("concurrentQueue", DISPATCH_QUEUE_CONCURRENT);
NSLog(@"concurrentQueue:%@",concurrentQueue);
dispatch_queue_t mainQueue = dispatch_get_main_queue();
NSLog(@"mainQueue:%@",mainQueue);
dispatch_queue_t default_globalQueue = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0);
NSLog(@"default_globalQueue:%@",default_globalQueue);
dispatch_queue_t low_globalQueue = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_LOW, 0);
NSLog(@"low_globalQueue:%@",low_globalQueue);
dispatch_queue_t high_globalQueue = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_HIGH, 0);
NSLog(@"high_globalQueue:%@",high_globalQueue);
}
打印结果
serialQueue:<OS_dispatch_queue_serial: serialQueue>
concurrentQueue:<OS_dispatch_queue_concurrent: concurrentQueue>
mainQueue:<OS_dispatch_queue_main: com.apple.main-thread>
default_globalQueue:<OS_dispatch_queue_global: com.apple.root.default-qos>
low_globalQueue:<OS_dispatch_queue_global: com.apple.root.utility-qos>
high_globalQueue:<OS_dispatch_queue_global: com.apple.root.user-initiated-qos>
我们在将断点加在最后,po一下具体的内部属性
我们知道,主队列也是串行队列,全局队列也是并行队列,从po出的信息来看他们的共性
- 主队列和串行队列的
width
都0x1
,而并行队列的width都大于1 - 全局队列的target都是
[0x0]
,串行队列的target都显示的是com.apple.root.default-qos.overcommit[0x103021f80]
,并行队列的target为com.apple.root.default-qos[0x103021f00]
据此,我们可以初步得出结论:
- 串行队列的宽度(width)为1,并行队列的宽度大于1
- 全局队列的target为
[0x0]
,其他队列的target以com.apple.root.default-
开头 - 自己创建的串行队列和并行队列都使用自己创建时给的名字,而主队列和全局队列,都有一个系统给的名字,主队列名为
com.apple.main-thread
,全局默认优先级名为com.apple.root.default-qos
,全局低优先级名为com.apple.root.utility-qos
,全局高优先级名为com.apple.root.user-initiated-qos
接下来我们从源码开始分析
二、从队列创建开始
我们从dispatch_queue_create
函数作为切入开始查询源码
dispatch_queue_t
dispatch_queue_create(const char *label, dispatch_queue_attr_t attr)
{
//调用_dispatch_lane_create_with_target
return _dispatch_lane_create_with_target(label, attr,
DISPATCH_TARGET_QUEUE_DEFAULT, true);
}
DISPATCH_NOINLINE
static dispatch_queue_t
_dispatch_lane_create_with_target(const char *label, dispatch_queue_attr_t dqa,
dispatch_queue_t tq, bool legacy)
{
//1. 第一步 设置dispatch_queue_attr_info_t属性
/*
通过传入的队列属性,设置队列信息
串行队列 返回的是空字典
非串行队列 表示叫
*/
dispatch_queue_attr_info_t dqai = _dispatch_queue_attr_to_info(dqa);
/*
规范化各个参数,如(qos, overcommit, tq)
*/
dispatch_qos_t qos = dqai.dqai_qos;
#if !HAVE_PTHREAD_WORKQUEUE_QOS
//如果qos等于6,那么将值设置为5
if (qos == DISPATCH_QOS_USER_INTERACTIVE) {
dqai.dqai_qos = qos = DISPATCH_QOS_USER_INITIATED;
}
//如果qos等于1,那么将值设置为2
if (qos == DISPATCH_QOS_MAINTENANCE) {
dqai.dqai_qos = qos = DISPATCH_QOS_BACKGROUND;
}
#endif // !HAVE_PTHREAD_WORKQUEUE_QOS
_dispatch_queue_attr_overcommit_t overcommit = dqai.dqai_overcommit;
if (overcommit != _dispatch_queue_attr_overcommit_unspecified && tq) {
if (tq->do_targetq) {
DISPATCH_CLIENT_CRASH(tq, "Cannot specify both overcommit and "
"a non-global target queue");
}
}
if (tq && dx_type(tq) == DISPATCH_QUEUE_GLOBAL_ROOT_TYPE) {
// Handle discrepancies between attr and target queue, attributes win
if (overcommit == _dispatch_queue_attr_overcommit_unspecified) {
if (tq->dq_priority & DISPATCH_PRIORITY_FLAG_OVERCOMMIT) {
overcommit = _dispatch_queue_attr_overcommit_enabled;
} else {
overcommit = _dispatch_queue_attr_overcommit_disabled;
}
}
if (qos == DISPATCH_QOS_UNSPECIFIED) {
qos = _dispatch_priority_qos(tq->dq_priority);
}
tq = NULL;
} else if (tq && !tq->do_targetq) {
// target is a pthread or runloop root queue, setting QoS or overcommit
// is disallowed
if (overcommit != _dispatch_queue_attr_overcommit_unspecified) {
DISPATCH_CLIENT_CRASH(tq, "Cannot specify an overcommit attribute "
"and use this kind of target queue");
}
} else {
if (overcommit == _dispatch_queue_attr_overcommit_unspecified) {
// Serial queues default to overcommit!
overcommit = dqai.dqai_concurrent ?
_dispatch_queue_attr_overcommit_disabled :
_dispatch_queue_attr_overcommit_enabled;
}
}
if (!tq) {
tq = _dispatch_get_root_queue(
qos == DISPATCH_QOS_UNSPECIFIED ? DISPATCH_QOS_DEFAULT : qos,
overcommit == _dispatch_queue_attr_overcommit_enabled)->_as_dq;
if (unlikely(!tq)) {
DISPATCH_CLIENT_CRASH(qos, "Invalid queue attribute");
}
}
/*
第2步,创建队列
*/
if (legacy) {
// if any of these attributes is specified, use non legacy classes
if (dqai.dqai_inactive || dqai.dqai_autorelease_frequency) {
legacy = false;
}
}
const void *vtable;
//DQF_MUTABLE = 0x00400000,
dispatch_queue_flags_t dqf = legacy ? DQF_MUTABLE : 0;
if (dqai.dqai_concurrent) {
//通过dqai.dqai_concurrent的这个属性来区分并发和串行
//这个是并行 生成名为OS_dispatch_queue_concurrent_class的类
vtable = DISPATCH_VTABLE(queue_concurrent);
} else {
//这个是串行 生成名为OS_dispatch_queue_serial_class的类
vtable = DISPATCH_VTABLE(queue_serial);
}
switch (dqai.dqai_autorelease_frequency) {
case DISPATCH_AUTORELEASE_FREQUENCY_NEVER:
dqf |= DQF_AUTORELEASE_NEVER;
break;
case DISPATCH_AUTORELEASE_FREQUENCY_WORK_ITEM:
dqf |= DQF_AUTORELEASE_ALWAYS;
break;
}
if (label) {
const char *tmp = _dispatch_strdup_if_mutable(label);
if (tmp != label) {
dqf |= DQF_LABEL_NEEDS_FREE;
label = tmp;
}
}
//开辟内存 - 生成响应的对象 queue
dispatch_lane_t dq = _dispatch_object_alloc(vtable,
sizeof(struct dispatch_lane_s));
/*
#define DISPATCH_QUEUE_WIDTH_FULL 0x1000ull 也就是4096
#define DISPATCH_QUEUE_WIDTH_POOL (DISPATCH_QUEUE_WIDTH_FULL - 1) 0xfff 也就是4095
#define DISPATCH_QUEUE_WIDTH_MAX (DISPATCH_QUEUE_WIDTH_FULL - 2) 0xffe 也就是4094
*/
//构造方法,初始化队列属性
_dispatch_queue_init(dq, dqf, dqai.dqai_concurrent ?
DISPATCH_QUEUE_WIDTH_MAX : 1, DISPATCH_QUEUE_ROLE_INNER |
(dqai.dqai_inactive ? DISPATCH_QUEUE_INACTIVE : 0));
//设置队列标签
dq->dq_label = label;
//设置优先级
dq->dq_priority = _dispatch_priority_make((dispatch_qos_t)dqai.dqai_qos,
dqai.dqai_relpri);
if (overcommit == _dispatch_queue_attr_overcommit_enabled) {
dq->dq_priority |= DISPATCH_PRIORITY_FLAG_OVERCOMMIT;
}
if (!dqai.dqai_inactive) {
_dispatch_queue_priority_inherit_from_target(dq, tq);
_dispatch_lane_inherit_wlh_from_target(dq, tq);
}
_dispatch_retain(tq);
dq->do_targetq = tq;
_dispatch_object_debug(dq, "%s", __func__);
return _dispatch_trace_queue_create(dq)._dq;
}
上面的源码多数地方已经给了注释,我们来捋一捋步骤:
1. 通过传入的参数 配置队列属性
dispatch_queue_attr_info_t dqai = _dispatch_queue_attr_to_info(dqa);
我们来看看dispatch_queue_attr_info_t
是个什么结构
typedef uint32_t dispatch_qos_t;
typedef uint32_t dispatch_priority_t;
typedef struct dispatch_queue_attr_info_s {
//服务质量,优先级
dispatch_qos_t dqai_qos : 8;
int dqai_relpri : 8;
//枚举类型,有三个值,分别为不确定、可以复用、不可以复用
uint16_t dqai_overcommit:2;
uint16_t dqai_autorelease_frequency:2;
//1为并行,0位串行
uint16_t dqai_concurrent:1;
uint16_t dqai_inactive:1;
} dispatch_queue_attr_info_t;
这是一个很明显的位域结构,其他属性我们先不管,我们第一眼可以看到dqai_concurrent
属性,占一位,取值在0和1之间,我们可以初步推断dqai_concurrent
是用来标识队列是串行还是并行。
接下来我们继续查看_dispatch_queue_attr_to_info
函数的实现
dispatch_queue_attr_info_t
_dispatch_queue_attr_to_info(dispatch_queue_attr_t dqa)
{
dispatch_queue_attr_info_t dqai = { };
//串行队列直接返回空
if (!dqa) return dqai;
#if DISPATCH_VARIANT_STATIC
if (dqa == &_dispatch_queue_attr_concurrent) {
dqai.dqai_concurrent = true;
return dqai;
}
#endif
if (dqa < _dispatch_queue_attrs ||
dqa >= &_dispatch_queue_attrs[DISPATCH_QUEUE_ATTR_COUNT]) {
DISPATCH_CLIENT_CRASH(dqa->do_vtable, "Invalid queue attribute");
}
size_t idx = (size_t)(dqa - _dispatch_queue_attrs);
//设置dispatch_queue_attr_info_t的各个属性值
//对2进行取余
dqai.dqai_inactive = (idx % DISPATCH_QUEUE_ATTR_INACTIVE_COUNT);
//除以2,下降一位,接下来就好设置dqai_concurrent的值了
idx /= DISPATCH_QUEUE_ATTR_INACTIVE_COUNT;
//对2进行取余,然后再取反,得到1
dqai.dqai_concurrent = !(idx % DISPATCH_QUEUE_ATTR_CONCURRENCY_COUNT);
idx /= DISPATCH_QUEUE_ATTR_CONCURRENCY_COUNT;
//对16取余
dqai.dqai_relpri = -(int)(idx % DISPATCH_QUEUE_ATTR_PRIO_COUNT);
idx /= DISPATCH_QUEUE_ATTR_PRIO_COUNT;
dqai.dqai_qos = idx % DISPATCH_QUEUE_ATTR_QOS_COUNT;
idx /= DISPATCH_QUEUE_ATTR_QOS_COUNT;
dqai.dqai_autorelease_frequency =
idx % DISPATCH_QUEUE_ATTR_AUTORELEASE_FREQUENCY_COUNT;
idx /= DISPATCH_QUEUE_ATTR_AUTORELEASE_FREQUENCY_COUNT;
dqai.dqai_overcommit = idx % DISPATCH_QUEUE_ATTR_OVERCOMMIT_COUNT;
idx /= DISPATCH_QUEUE_ATTR_OVERCOMMIT_COUNT;
return dqai;
}
这个函数里面具体操作如下:
- 如果是串行队列,直接返回空
- 如果是并行队列,则进行位操作,逐个设置位域内部值
设置好队列属性初始值之后,我们接着来规范化各个参数
/*
规范化各个参数,如(qos, overcommit, tq)
*/
dispatch_qos_t qos = dqai.dqai_qos;
#if !HAVE_PTHREAD_WORKQUEUE_QOS
//如果qos等于6,那么将值设置为5
if (qos == DISPATCH_QOS_USER_INTERACTIVE) {
dqai.dqai_qos = qos = DISPATCH_QOS_USER_INITIATED;
}
//如果qos等于1,那么将值设置为2
if (qos == DISPATCH_QOS_MAINTENANCE) {
dqai.dqai_qos = qos = DISPATCH_QOS_BACKGROUND;
}
#endif // !HAVE_PTHREAD_WORKQUEUE_QOS
_dispatch_queue_attr_overcommit_t overcommit = dqai.dqai_overcommit;
if (overcommit != _dispatch_queue_attr_overcommit_unspecified && tq) {
if (tq->do_targetq) {
DISPATCH_CLIENT_CRASH(tq, "Cannot specify both overcommit and "
"a non-global target queue");
}
}
if (tq && dx_type(tq) == DISPATCH_QUEUE_GLOBAL_ROOT_TYPE) {
// Handle discrepancies between attr and target queue, attributes win
if (overcommit == _dispatch_queue_attr_overcommit_unspecified) {
if (tq->dq_priority & DISPATCH_PRIORITY_FLAG_OVERCOMMIT) {
overcommit = _dispatch_queue_attr_overcommit_enabled;
} else {
overcommit = _dispatch_queue_attr_overcommit_disabled;
}
}
if (qos == DISPATCH_QOS_UNSPECIFIED) {
qos = _dispatch_priority_qos(tq->dq_priority);
}
tq = NULL;
} else if (tq && !tq->do_targetq) {
// target is a pthread or runloop root queue, setting QoS or overcommit
// is disallowed
if (overcommit != _dispatch_queue_attr_overcommit_unspecified) {
DISPATCH_CLIENT_CRASH(tq, "Cannot specify an overcommit attribute "
"and use this kind of target queue");
}
} else {
if (overcommit == _dispatch_queue_attr_overcommit_unspecified) {
// Serial queues default to overcommit!
overcommit = dqai.dqai_concurrent ?
_dispatch_queue_attr_overcommit_disabled :
_dispatch_queue_attr_overcommit_enabled;
}
}
if (!tq) {
tq = _dispatch_get_root_queue(
qos == DISPATCH_QOS_UNSPECIFIED ? DISPATCH_QOS_DEFAULT : qos,
overcommit == _dispatch_queue_attr_overcommit_enabled)->_as_dq;
if (unlikely(!tq)) {
DISPATCH_CLIENT_CRASH(qos, "Invalid queue attribute");
}
}
这个里面,先设置qos
的值,而系统定义了多个宏来表示qos
的值,我们可以看到实际的qos
取值在0-6之间,0表示未确定,还有一个15表示饱和的,而且从这些宏定义的英语取名和我们之前的打印结果可以看出,qos
就是关于优先级的值,而且还可以看出,高优先级的qos
为5,低优先级的qos
为3,默认优先级的qos
为4,而后台优先级的qos
为2,所以我们可以假定推断:后台优先级的优先级比低优先级还低
typedef uint32_t dispatch_qos_t;
#define DISPATCH_QOS_UNSPECIFIED ((dispatch_qos_t)0)
#define DISPATCH_QOS_MAINTENANCE ((dispatch_qos_t)1)
#define DISPATCH_QOS_BACKGROUND ((dispatch_qos_t)2)
#define DISPATCH_QOS_UTILITY ((dispatch_qos_t)3)
#define DISPATCH_QOS_DEFAULT ((dispatch_qos_t)4)
#define DISPATCH_QOS_USER_INITIATED ((dispatch_qos_t)5)
#define DISPATCH_QOS_USER_INTERACTIVE ((dispatch_qos_t)6)
#define DISPATCH_QOS_MIN DISPATCH_QOS_MAINTENANCE
#define DISPATCH_QOS_MAX DISPATCH_QOS_USER_INTERACTIVE
#define DISPATCH_QOS_SATURATED ((dispatch_qos_t)15)
然后设置overcommit
的值,从下面我们可以看到overcommit
是一个枚举
typedef enum {
//不明确
_dispatch_queue_attr_overcommit_unspecified = 0,
//可以复用
_dispatch_queue_attr_overcommit_enabled,
//不可以复用
_dispatch_queue_attr_overcommit_disabled,
} _dispatch_queue_attr_overcommit_t;
再接下来是设置tq
的值,由于调用这个函数我们传入的tq为NULL,所以会进入这段代码
if (!tq) {
tq = _dispatch_get_root_queue(
qos == DISPATCH_QOS_UNSPECIFIED ? DISPATCH_QOS_DEFAULT : qos,
overcommit == _dispatch_queue_attr_overcommit_enabled)->_as_dq;
if (unlikely(!tq)) {
DISPATCH_CLIENT_CRASH(qos, "Invalid queue attribute");}
}
这段代码调用了_dispatch_get_root_queue
函数,传入两个参数,第一个参数传入的值,如果qos
的值不为0,则传入qos
的值,否则传入默认值4;第二个参数传入的0或者1,如果可复用则传入的为1,否则传入0
DISPATCH_ALWAYS_INLINE DISPATCH_CONST
static inline dispatch_queue_global_t
_dispatch_get_root_queue(dispatch_qos_t qos, bool overcommit)
{
if (unlikely(qos < DISPATCH_QOS_MIN || qos > DISPATCH_QOS_MAX)) {
DISPATCH_CLIENT_CRASH(qos, "Corrupted priority");
}
return &_dispatch_root_queues[2 * (qos - 1) + overcommit];
}
我们关注返回值&_dispatch_root_queues[2 * (qos - 1) + overcommit];
,这句的意思是从一个叫_dispatch_root_queues
的数组中取出值,赋值给tq
。
我们来看看这个数组是什么:
struct dispatch_queue_global_s _dispatch_root_queues[] = {
#define _DISPATCH_ROOT_QUEUE_IDX(n, flags) \
((flags & DISPATCH_PRIORITY_FLAG_OVERCOMMIT) ? \
DISPATCH_ROOT_QUEUE_IDX_##n##_QOS_OVERCOMMIT : \
DISPATCH_ROOT_QUEUE_IDX_##n##_QOS)
#define _DISPATCH_ROOT_QUEUE_ENTRY(n, flags, ...) \
[_DISPATCH_ROOT_QUEUE_IDX(n, flags)] = { \
DISPATCH_GLOBAL_OBJECT_HEADER(queue_global), \
.dq_state = DISPATCH_ROOT_QUEUE_STATE_INIT_VALUE, \
.do_ctxt = _dispatch_root_queue_ctxt(_DISPATCH_ROOT_QUEUE_IDX(n, flags)), \
.dq_atomic_flags = DQF_WIDTH(DISPATCH_QUEUE_WIDTH_POOL), \
.dq_priority = flags | ((flags & DISPATCH_PRIORITY_FLAG_FALLBACK) ? \
_dispatch_priority_make_fallback(DISPATCH_QOS_##n) : \
_dispatch_priority_make(DISPATCH_QOS_##n, 0)), \
__VA_ARGS__ \
}
_DISPATCH_ROOT_QUEUE_ENTRY(MAINTENANCE, 0,
.dq_label = "com.apple.root.maintenance-qos",
.dq_serialnum = 4,
),
_DISPATCH_ROOT_QUEUE_ENTRY(MAINTENANCE, DISPATCH_PRIORITY_FLAG_OVERCOMMIT,
.dq_label = "com.apple.root.maintenance-qos.overcommit",
.dq_serialnum = 5,
),
_DISPATCH_ROOT_QUEUE_ENTRY(BACKGROUND, 0,
.dq_label = "com.apple.root.background-qos",
.dq_serialnum = 6,
),
_DISPATCH_ROOT_QUEUE_ENTRY(BACKGROUND, DISPATCH_PRIORITY_FLAG_OVERCOMMIT,
.dq_label = "com.apple.root.background-qos.overcommit",
.dq_serialnum = 7,
),
_DISPATCH_ROOT_QUEUE_ENTRY(UTILITY, 0,
.dq_label = "com.apple.root.utility-qos",
.dq_serialnum = 8,
),
_DISPATCH_ROOT_QUEUE_ENTRY(UTILITY, DISPATCH_PRIORITY_FLAG_OVERCOMMIT,
.dq_label = "com.apple.root.utility-qos.overcommit",
.dq_serialnum = 9,
),
_DISPATCH_ROOT_QUEUE_ENTRY(DEFAULT, DISPATCH_PRIORITY_FLAG_FALLBACK,
.dq_label = "com.apple.root.default-qos",
.dq_serialnum = 10,
),
_DISPATCH_ROOT_QUEUE_ENTRY(DEFAULT,
DISPATCH_PRIORITY_FLAG_FALLBACK | DISPATCH_PRIORITY_FLAG_OVERCOMMIT,
.dq_label = "com.apple.root.default-qos.overcommit",
.dq_serialnum = 11,
),
_DISPATCH_ROOT_QUEUE_ENTRY(USER_INITIATED, 0,
.dq_label = "com.apple.root.user-initiated-qos",
.dq_serialnum = 12,
),
_DISPATCH_ROOT_QUEUE_ENTRY(USER_INITIATED, DISPATCH_PRIORITY_FLAG_OVERCOMMIT,
.dq_label = "com.apple.root.user-initiated-qos.overcommit",
.dq_serialnum = 13,
),
_DISPATCH_ROOT_QUEUE_ENTRY(USER_INTERACTIVE, 0,
.dq_label = "com.apple.root.user-interactive-qos",
.dq_serialnum = 14,
),
_DISPATCH_ROOT_QUEUE_ENTRY(USER_INTERACTIVE, DISPATCH_PRIORITY_FLAG_OVERCOMMIT,
.dq_label = "com.apple.root.user-interactive-qos.overcommit",
.dq_serialnum = 15,
),
};
我们可以看出这个数组一共定义了12个成员,取得它们其中某一个,然后取地址,就是我们的tq的值。而下标2 * (qos - 1) + overcommit
就是根据我们传入的值计算得来,按照默认传入的default来看,就是2*3+0/1,也就是6或者7,我们可以看到下标为6的队列名为"com.apple.root.default-qos"
,和我们在外面打印出来的默认优先级的全局队列一致
从这里我们大致可以猜想:
默认创建了12个静态队列,包含了全局队列,我们获取全局队列的时候,是直接在数组中读取的
2. 创建队列
/*
第2步,创建队列
*/
if (legacy) {
// if any of these attributes is specified, use non legacy classes
if (dqai.dqai_inactive || dqai.dqai_autorelease_frequency) {
legacy = false;
}
}
const void *vtable;
//DQF_MUTABLE = 0x00400000,
dispatch_queue_flags_t dqf = legacy ? DQF_MUTABLE : 0;
if (dqai.dqai_concurrent) {
//通过dqai.dqai_concurrent的这个属性来区分并发和串行
//这个是并行 生成名为OS_dispatch_queue_concurrent_class的类
vtable = DISPATCH_VTABLE(queue_concurrent);
} else {
//这个是串行 生成名为OS_dispatch_queue_serial_class的类
vtable = DISPATCH_VTABLE(queue_serial);
}
switch (dqai.dqai_autorelease_frequency) {
case DISPATCH_AUTORELEASE_FREQUENCY_NEVER:
dqf |= DQF_AUTORELEASE_NEVER;
break;
case DISPATCH_AUTORELEASE_FREQUENCY_WORK_ITEM:
dqf |= DQF_AUTORELEASE_ALWAYS;
break;
}
if (label) {
const char *tmp = _dispatch_strdup_if_mutable(label);
if (tmp != label) {
dqf |= DQF_LABEL_NEEDS_FREE;
label = tmp;
}
}
//开辟内存 - 生成响应的对象 queue
dispatch_lane_t dq = _dispatch_object_alloc(vtable,
sizeof(struct dispatch_lane_s));
/*
#define DISPATCH_QUEUE_WIDTH_FULL 0x1000ull 也就是4096
#define DISPATCH_QUEUE_WIDTH_POOL (DISPATCH_QUEUE_WIDTH_FULL - 1) 0xfff 也就是4095
#define DISPATCH_QUEUE_WIDTH_MAX (DISPATCH_QUEUE_WIDTH_FULL - 2) 0xffe 也就是4094
*/
//构造方法,初始化队列属性
_dispatch_queue_init(dq, dqf, dqai.dqai_concurrent ?
DISPATCH_QUEUE_WIDTH_MAX : 1, DISPATCH_QUEUE_ROLE_INNER |
(dqai.dqai_inactive ? DISPATCH_QUEUE_INACTIVE : 0));
//设置队列标签
dq->dq_label = label;
//设置优先级
dq->dq_priority = _dispatch_priority_make((dispatch_qos_t)dqai.dqai_qos,
dqai.dqai_relpri);
if (overcommit == _dispatch_queue_attr_overcommit_enabled) {
dq->dq_priority |= DISPATCH_PRIORITY_FLAG_OVERCOMMIT;
}
if (!dqai.dqai_inactive) {
_dispatch_queue_priority_inherit_from_target(dq, tq);
_dispatch_lane_inherit_wlh_from_target(dq, tq);
}
_dispatch_retain(tq);
dq->do_targetq = tq;
_dispatch_object_debug(dq, "%s", __func__);
一开始是设置并行/串行的队列类名,使用DISPATCH_VTABLE
来设置,我们可以看出
- 串行队列类名以
OS_dispatch_queue_serial
开头 - 并行队列类名以
OS_dispatch_queue_concurrent
开头
这和我们一开始打印出来的类名一致
#define DISPATCH_VTABLE(name) DISPATCH_OBJC_CLASS(name)
#define DISPATCH_OBJC_CLASS(name) (&DISPATCH_CLASS_SYMBOL(name))
#define DISPATCH_CLASS_SYMBOL(name) OS_dispatch_##name##_class
接下来是设置队列名label
if (label) {
const char *tmp = _dispatch_strdup_if_mutable(label);
if (tmp != label) {
dqf |= DQF_LABEL_NEEDS_FREE;
label = tmp;
}
}
接着根据设置好的类名,分配内存,生成queue,我们也可以看到dispatch_lane_t
结构体的结构,这一步我们暂不做深究,以后研究更多了来补上
//开辟内存 - 生成响应的对象 queue
dispatch_lane_t dq = _dispatch_object_alloc(vtable,
sizeof(struct dispatch_lane_s));
#define DISPATCH_LANE_CLASS_HEADER(x) \
struct dispatch_queue_s _as_dq[0]; \
DISPATCH_QUEUE_CLASS_HEADER(x, \
struct dispatch_object_s *volatile dq_items_tail); \
dispatch_unfair_lock_s dq_sidelock; \
struct dispatch_object_s *volatile dq_items_head; \
uint32_t dq_side_suspend_cnt
typedef struct dispatch_lane_s {
DISPATCH_LANE_CLASS_HEADER(lane);
/* 32bit hole on LP64 */
} DISPATCH_ATOMIC64_ALIGN *dispatch_lane_t;
#define DISPATCH_QUEUE_CLASS_HEADER(x, __pointer_sized_field__) \
_DISPATCH_QUEUE_CLASS_HEADER(x, __pointer_sized_field__); \
/* LP64 global queue cacheline boundary */ \
unsigned long dq_serialnum; \
const char *dq_label; \
DISPATCH_UNION_LE(uint32_t volatile dq_atomic_flags, \
const uint16_t dq_width, \
const uint16_t __dq_opaque2 \
); \
dispatch_priority_t dq_priority; \
union { \
struct dispatch_queue_specific_head_s *dq_specific_head; \
struct dispatch_source_refs_s *ds_refs; \
struct dispatch_timer_source_refs_s *ds_timer_refs; \
struct dispatch_mach_recv_refs_s *dm_recv_refs; \
struct dispatch_channel_callbacks_s const *dch_callbacks; \
}; \
int volatile dq_sref_cnt
struct dispatch_queue_s {
DISPATCH_QUEUE_CLASS_HEADER(queue, void *__dq_opaque1);
/* 32bit hole on LP64 */
} DISPATCH_ATOMIC64_ALIGN;
然后我们调用构造方法,对队列进行初始化
/*
#define DISPATCH_QUEUE_WIDTH_FULL 0x1000ull 也就是4096
#define DISPATCH_QUEUE_WIDTH_POOL (DISPATCH_QUEUE_WIDTH_FULL - 1) 0xfff 也就是4095
#define DISPATCH_QUEUE_WIDTH_MAX (DISPATCH_QUEUE_WIDTH_FULL - 2) 0xffe 也就是4094
*/
//构造方法,初始化队列属性
_dispatch_queue_init(dq, dqf, dqai.dqai_concurrent ?
DISPATCH_QUEUE_WIDTH_MAX : 1, DISPATCH_QUEUE_ROLE_INNER |
(dqai.dqai_inactive ? DISPATCH_QUEUE_INACTIVE : 0));
从这段代码我们可以看出,我们自己创建的串行队列的width为1,自己创建的并行队列width为0xffe,也就是(0x1000-0x2),这也和我们之前打印出来的一致
接下是设置队列标签(名字),设置队列优先级等,然后调用_dispatch_retain(tq);
将队列的引用计数加1
_dispatch_retain(tq);
最后调用_dispatch_trace_queue_create(dq)._dq
来返回创建的队列
我们看到_dispatch_trace_queue_create
调用了_dispatch_introspection_queue_create
,然后_dispatch_introspection_queue_create
又调用了_dispatch_introspection_queue_create
最后return upcast(dq)._dqu;
将dq
强转为根父类dispatch_object_t
返回其_dqu
值,这就是我们创建的queue
DISPATCH_ALWAYS_INLINE
static inline dispatch_queue_class_t
_dispatch_trace_queue_create(dispatch_queue_class_t dqu)
{
_dispatch_only_if_ktrace_enabled({
uint64_t dq_label[4] = {0}; // So that we get the right null termination
dispatch_queue_t dq = dqu._dq;
strncpy((char *)dq_label, (char *)dq->dq_label ?: "", sizeof(dq_label));
_dispatch_ktrace2(DISPATCH_QOS_TRACE_queue_creation_start,
dq->dq_serialnum,
_dispatch_priority_to_pp_prefer_fallback(dq->dq_priority));
_dispatch_ktrace4(DISPATCH_QOS_TRACE_queue_creation_end,
dq_label[0], dq_label[1], dq_label[2], dq_label[3]);
});
return _dispatch_introspection_queue_create(dqu);
}
再看_dispatch_introspection_queue_create
函数的实现
dispatch_queue_class_t
_dispatch_introspection_queue_create(dispatch_queue_t dq)
{
dispatch_queue_introspection_context_t dqic;
size_t sz = sizeof(struct dispatch_queue_introspection_context_s);
if (!_dispatch_introspection.debug_queue_inversions) {
sz = offsetof(struct dispatch_queue_introspection_context_s,
__dqic_no_queue_inversion);
}
dqic = _dispatch_calloc(1, sz);
dqic->dqic_queue._dq = dq;
if (_dispatch_introspection.debug_queue_inversions) {
LIST_INIT(&dqic->dqic_order_top_head);
LIST_INIT(&dqic->dqic_order_bottom_head);
}
dq->do_finalizer = dqic;
_dispatch_unfair_lock_lock(&_dispatch_introspection.queues_lock);
LIST_INSERT_HEAD(&_dispatch_introspection.queues, dqic, dqic_list);
_dispatch_unfair_lock_unlock(&_dispatch_introspection.queues_lock);
DISPATCH_INTROSPECTION_INTERPOSABLE_HOOK_CALLOUT(queue_create, dq);
if (DISPATCH_INTROSPECTION_HOOK_ENABLED(queue_create)) {
_dispatch_introspection_queue_create_hook(dq);
}
//强转为dispatch_object_t类型 然后返回
return upcast(dq)._dqu;
}
最后我们来看一看dispatch_object_t
和dispatch_queue_class_t
的结构
typedef struct dispatch_object_s {
private:
dispatch_object_s();
~dispatch_object_s();
dispatch_object_s(const dispatch_object_s &);
void operator=(const dispatch_object_s &);
} *dispatch_object_t;
typedef union {
struct dispatch_queue_s *_dq;
struct dispatch_workloop_s *_dwl;
struct dispatch_lane_s *_dl;
struct dispatch_queue_static_s *_dsq;
struct dispatch_queue_global_s *_dgq;
struct dispatch_queue_pthread_root_s *_dpq;
struct dispatch_source_s *_ds;
struct dispatch_channel_s *_dch;
struct dispatch_mach_s *_dm;
dispatch_lane_class_t _dlu;
#ifdef __OBJC__
id<OS_dispatch_queue> _objc_dq;
#endif
} dispatch_queue_class_t DISPATCH_TRANSPARENT_UNION;
三、主队列
我们从dispatch_get_main_queue()
入手
DISPATCH_INLINE DISPATCH_ALWAYS_INLINE DISPATCH_CONST DISPATCH_NOTHROW
dispatch_queue_main_t
dispatch_get_main_queue(void)
{
return DISPATCH_GLOBAL_OBJECT(dispatch_queue_main_t, _dispatch_main_q);
}
源码中调用了DISPATCH_GLOBAL_OBJECT(dispatch_queue_main_t, _dispatch_main_q);
,我们先看看DISPATCH_GLOBAL_OBJECT
是什么东西
#define DISPATCH_GLOBAL_OBJECT(type, object) ((OS_OBJECT_BRIDGE type)&(object))
然后我们再看看两个参数,我们先看看dispatch_queue_main_t
DISPATCH_DECL_SUBCLASS(dispatch_queue_main, dispatch_queue_serial);
#define DISPATCH_DECL_SUBCLASS(name, base) OS_OBJECT_DECL_SUBCLASS(name, base)
#define OS_OBJECT_DECL_SUBCLASS(name, super) \
OS_OBJECT_DECL_IMPL(name, <OS_OBJECT_CLASS(super)>)
#define OS_OBJECT_DECL_IMPL(name, ...) \
OS_OBJECT_DECL_PROTOCOL(name, __VA_ARGS__) \
typedef NSObject<OS_OBJECT_CLASS(name)> \
* OS_OBJC_INDEPENDENT_CLASS name##_t
从上面的源码我们可以看出,主队列是串行队列的子类,通过对父类方法的重写,得到了dispatch_queue_main_t
我们再看第二个参数_dispatch_main_q
,找到
struct dispatch_queue_static_s _dispatch_main_q = {
DISPATCH_GLOBAL_OBJECT_HEADER(queue_main),
#if !DISPATCH_USE_RESOLVERS
.do_targetq = _dispatch_get_default_queue(true),
#endif
.dq_state = DISPATCH_QUEUE_STATE_INIT_VALUE(1) |
DISPATCH_QUEUE_ROLE_BASE_ANON,
.dq_label = "com.apple.main-thread",
.dq_atomic_flags = DQF_THREAD_BOUND | DQF_WIDTH(1),
.dq_serialnum = 1,
};
这个结构体设置了主线程的各个属性,从结构体中我们可以看到dq_label = "com.apple.main-thread"
,这表示是我们的主线程,这也和我们的打印一致
四、全局队列
我们也从dispatch_get_global_queue
函数出发
dispatch_queue_global_t
dispatch_get_global_queue(long priority, unsigned long flags)
{
dispatch_assert(countof(_dispatch_root_queues) ==
DISPATCH_ROOT_QUEUE_COUNT);
if (flags & ~(unsigned long)DISPATCH_QUEUE_OVERCOMMIT) {
return DISPATCH_BAD_INPUT;
}
dispatch_qos_t qos = _dispatch_qos_from_queue_priority(priority);
#if !HAVE_PTHREAD_WORKQUEUE_QOS
if (qos == QOS_CLASS_MAINTENANCE) {
qos = DISPATCH_QOS_BACKGROUND;
} else if (qos == QOS_CLASS_USER_INTERACTIVE) {
qos = DISPATCH_QOS_USER_INITIATED;
}
#endif
if (qos == DISPATCH_QOS_UNSPECIFIED) {
return DISPATCH_BAD_INPUT;
}
return _dispatch_get_root_queue(qos, flags & DISPATCH_QUEUE_OVERCOMMIT);
}
这个函数最后调用_dispatch_get_root_queue
函数
DISPATCH_ALWAYS_INLINE DISPATCH_CONST
static inline dispatch_queue_global_t
_dispatch_get_root_queue(dispatch_qos_t qos, bool overcommit)
{
if (unlikely(qos < DISPATCH_QOS_MIN || qos > DISPATCH_QOS_MAX)) {
DISPATCH_CLIENT_CRASH(qos, "Corrupted priority");
}
return &_dispatch_root_queues[2 * (qos - 1) + overcommit];
}
在第二段创建队列中我们可以看到,_dispatch_get_root_queue
函数的返回值是从_dispatch_root_queues
数组中取出,我们再次看看这个数组的定义:
struct dispatch_queue_global_s _dispatch_root_queues[] = {
#define _DISPATCH_ROOT_QUEUE_IDX(n, flags) \
((flags & DISPATCH_PRIORITY_FLAG_OVERCOMMIT) ? \
DISPATCH_ROOT_QUEUE_IDX_##n##_QOS_OVERCOMMIT : \
DISPATCH_ROOT_QUEUE_IDX_##n##_QOS)
#define _DISPATCH_ROOT_QUEUE_ENTRY(n, flags, ...) \
[_DISPATCH_ROOT_QUEUE_IDX(n, flags)] = { \
DISPATCH_GLOBAL_OBJECT_HEADER(queue_global), \
.dq_state = DISPATCH_ROOT_QUEUE_STATE_INIT_VALUE, \
.do_ctxt = _dispatch_root_queue_ctxt(_DISPATCH_ROOT_QUEUE_IDX(n, flags)), \
.dq_atomic_flags = DQF_WIDTH(DISPATCH_QUEUE_WIDTH_POOL), \
.dq_priority = flags | ((flags & DISPATCH_PRIORITY_FLAG_FALLBACK) ? \
_dispatch_priority_make_fallback(DISPATCH_QOS_##n) : \
_dispatch_priority_make(DISPATCH_QOS_##n, 0)), \
__VA_ARGS__ \
}
_DISPATCH_ROOT_QUEUE_ENTRY(MAINTENANCE, 0,
.dq_label = "com.apple.root.maintenance-qos",
.dq_serialnum = 4,
),
_DISPATCH_ROOT_QUEUE_ENTRY(MAINTENANCE, DISPATCH_PRIORITY_FLAG_OVERCOMMIT,
.dq_label = "com.apple.root.maintenance-qos.overcommit",
.dq_serialnum = 5,
),
_DISPATCH_ROOT_QUEUE_ENTRY(BACKGROUND, 0,
.dq_label = "com.apple.root.background-qos",
.dq_serialnum = 6,
),
_DISPATCH_ROOT_QUEUE_ENTRY(BACKGROUND, DISPATCH_PRIORITY_FLAG_OVERCOMMIT,
.dq_label = "com.apple.root.background-qos.overcommit",
.dq_serialnum = 7,
),
_DISPATCH_ROOT_QUEUE_ENTRY(UTILITY, 0,
.dq_label = "com.apple.root.utility-qos",
.dq_serialnum = 8,
),
_DISPATCH_ROOT_QUEUE_ENTRY(UTILITY, DISPATCH_PRIORITY_FLAG_OVERCOMMIT,
.dq_label = "com.apple.root.utility-qos.overcommit",
.dq_serialnum = 9,
),
_DISPATCH_ROOT_QUEUE_ENTRY(DEFAULT, DISPATCH_PRIORITY_FLAG_FALLBACK,
.dq_label = "com.apple.root.default-qos",
.dq_serialnum = 10,
),
_DISPATCH_ROOT_QUEUE_ENTRY(DEFAULT,
DISPATCH_PRIORITY_FLAG_FALLBACK | DISPATCH_PRIORITY_FLAG_OVERCOMMIT,
.dq_label = "com.apple.root.default-qos.overcommit",
.dq_serialnum = 11,
),
_DISPATCH_ROOT_QUEUE_ENTRY(USER_INITIATED, 0,
.dq_label = "com.apple.root.user-initiated-qos",
.dq_serialnum = 12,
),
_DISPATCH_ROOT_QUEUE_ENTRY(USER_INITIATED, DISPATCH_PRIORITY_FLAG_OVERCOMMIT,
.dq_label = "com.apple.root.user-initiated-qos.overcommit",
.dq_serialnum = 13,
),
_DISPATCH_ROOT_QUEUE_ENTRY(USER_INTERACTIVE, 0,
.dq_label = "com.apple.root.user-interactive-qos",
.dq_serialnum = 14,
),
_DISPATCH_ROOT_QUEUE_ENTRY(USER_INTERACTIVE, DISPATCH_PRIORITY_FLAG_OVERCOMMIT,
.dq_label = "com.apple.root.user-interactive-qos.overcommit",
.dq_serialnum = 15,
),
};
我们可以看到,根据我们传入的不同的优先级,全局队列从_dispatch_root_queues
数组中取出预先写好的队列来返回。
而从.dq_atomic_flags = DQF_WIDTH(DISPATCH_QUEUE_WIDTH_POOL)
这句中可以看到,全局队列的宽度为0xfff
,宽度大于1,说明全局队列是一个并发队列,由前面可知,我们自己创建的并行队列宽度为0xffe
,这就是全局队列和自创的并发队列的区别