进化算法,也被成为是演化算法(evolutionary algorithms,简称EAs),它不是一个具体的算法,而是一个“算法簇”。进化算法的产生的灵感借鉴了大自然中生物的进化操作,它一般包括基因编码,种群初始化,交叉变异算子,经营保留机制等基本操作。与传统的基于微积分的方法和穷举方法等优化算法(具体介绍见博客[Math] 常见的几种最优化方法中的其他数学优化方法)相比,进化计算是一种成熟的具有高鲁棒性和广泛适用性的全局优化方法,具有自组织、自适应、自学习的特性,能够不受问题性质的限制,有效地处理传统优化算法难以解决的复杂问题(比如NP难优化问题)。
除了上述优点以外,进化算法还经常被用到多目标问题的优化求解中来,我们一般称这类进化算法为进化多目标优化算法(MOEAs)。目前进化计算的相关算法已经被广泛用于参数优化、工业调度、资源分配、复杂网络分析等领域。
引用:https://www.cnblogs.com/maybe2030/p/4665837.html