决策树之 GBDT 算法 - 分类部分

上一次我们一起学习了 GBDT 算法的回归部分,今天我们继续学习该算法的分类部分。使用 GBDT 来解决分类问题和解决回归问题的本质是一样的,都是通过不断构建决策树的方式,使预测结果一步步的接近目标值。

因为是分类问题,所以分类 GBDT 和回归 GBDT 的 Loss 函数是不同的,具体原因我们在《深入理解逻辑回归》 一文中有分析过,下面我们来看下分类 GBDT 的 Loss 函数。

Loss 函数

和逻辑回归一样,分类 GBDT 的 Loss 函数采用的也是 Log Likelihood:
L = \arg\min\left[\sum_i^n-( y_i\log(p_i)+(1-y_i)\log(1-p_i) )\right]
其中,n 表示有 n 条样本,y_i 为第 i 条样本的观察值(或目标值),该值要么是 0,要么是 1; p_i 为模型对第 i 个样本的预测值,它是一个取值范围为 [0,1] 之间的概率,现在我们来看下该 Loss 是否可导,只用看"求和符号 \sum" 里面的部分是否可导即可,如下:
\begin{aligned} l&=-y_i\log(p_i) - (1-y_i)\log(1-p_i)\\ &=-y_i\log(p_i)-\log(1-p_i)-y_i\log(1-p_i)\\ &=-y_i(\log(\frac{p_i}{1-p_i}))-\log(1-p_i) \end{aligned}
把上面式子中的 p 用 log(odds) 来表示,即用 \log(odds_i) 来替换 \log(p_i/(1-p_i)),用 e^{\log(odds_i)}/(1+e^{\log(odds_i)}) 来替换 p_i(对 log(odds) 不熟悉的同学,可以先阅读深入理解逻辑回归一文),如下:
\begin{aligned} l&= -y_i\log(odds_i) - \log(1-\frac{e^{\log(odds_i)}}{1+e^{\log(odds_i)}}) \\&=- y_i\log(odds_i) - \log(\frac{1}{1+e^{\log(odds_i)}}) \\&=-y_i\log(odds_i)+\log(1+e^{\log(odds_i)}) \end{aligned}
我们再对其求导:
\frac{dl}{d\log(odds)} = -y_i + \frac{e^{\log(odds_i)}}{1+e^{\log(odds_i)}}
右边的 e^{log(odds_i)}/(1+e^{log(odds_i)}) 正好又是 p_i,所以 l'(\log(odds)) 又等于 -y_i+p_i,注意,这两种形式后面都会用到。可见,这个 loss 函数是可导的,该分类算法可以用梯度下降来求解。

构建分类 GBDT 的步骤依然是下面两个:

  1. 初始化 GBDT
  2. 循环生成决策树

下面我们来一一说明:

初始化 GBDT

和回归问题一样,分类 GBDT 的初始状态也只有一个叶子节点,该节点为所有样本的初始预测值,如下:
F_0(x) = \arg\min_{\gamma}\sum_{i=1}^n L(y,\gamma)
上式中,F 代表 GBDT 模型,F_0 为模型的初始状态,该式子意为:找到一个 \gamma,使所有样本的 Loss 最小,在这里及下文中,\gamma 都表示节点的输出,且它是一个 log(odds) 形式的值,在初始状态,\gamma 又是 F_0

我们还是用一个最简单的例子来说明该步骤,假设我们有以下 3 条样本:

喜欢爆米花 年龄 颜色偏好 喜欢看电影
Yes 12 Blue Yes
No 87 Green Yes
No 44 Blue No

我们希望构建 GBDT 分类树,它能通过「喜欢爆米花」、「年龄」和「颜色偏好」这 3 个特征来预测某一个样本是否喜欢看电影,因为是只有 3 个样本的极简数据集,所以我们的决策树都是只有 1 个根节点、2 个叶子节点的树桩(Stump),但在实际应用中,决策树的叶子节点一般为 8-32 个。

我们把数据代入上面的公式中求 Loss:
Loss = L(1,\gamma)+L(1,\gamma)+L(0,\gamma)
为了使其最小,我们对它求导,并令结果等于 0:
(-1+p)+(-1+p)+(0+p)=0
于是初始值 p=2/3=0.67\gamma=\log(2)=0.69,模型的初始状态 F_0(x) 为 0.69。

说了一大堆,实际上你却可以很容易的算出该模型的初始值,它就是正样本数比上负样本数的 log 值,例子中,正样本数为 2 个,负样本为 1 个,那么:
F_0(x)=\log(\frac{positive\_count}{negative\_count}) = \log(\frac{2}{1}) = 0.69

循环生成决策树

和回归 GBDT 一样,分类 GBDT 第二步也可以分成四个子步骤:(A)、(B)、(C)、(D),我们把它写成伪代码:

for m = 1 to M:
    (A)
    (B)
    (C)
    (D)

其中 m 表示第 m 棵树,M 为树的个数上限,我们先来看 (A):

(A):计算
r_{im} = -\left[\frac{\partial L(y_i, F(x_i))}{\partial F(x_i)}\right]_{F(x)=F_{m-1}(x)}
此处为使用 m-1 棵树的模型,计算每个样本的残差 r_{im},这里的偏微分实际上就是求每个样本的梯度,因为梯度我们已经计算过了,即 -y_i+p_i,那么 r_{im}=y_i-p_i,于是我们的例子中,每个样本的残差如下:

样本 i 喜欢看电影 第1棵树的残差 r_{i1}
1 Yes 1-0.67=0.33
2 Yes 1-0.67=0.33
3 No 0-0.67=-0.67

这样,第 (A) 小步就完成了。

(B):使用回归树来拟合 r_{im},回归树的构建过程可以参照《CART 回归决策树》一文。我们产生的第 2 棵决策树(此时 m=1)如下:

(C):对每个叶子节点 j,计算
\gamma_{jm} = \arg\min_{\gamma}\sum_{x\in R_{ij}} L(y_i, F_{m-1}(x_i) + \gamma)
意思是,在刚构建的树 m 中,找到每个节点 j 的输出 \gamma_{jm},能使该节点的 Loss 最小。

左边节点对应第 1 个样本,我们把它带入到上式得:
L(y_1,F_{m-1}(x_1)+\gamma)=-y_1(F_{m-1}(x_1)+\gamma) + \log(1+e^{F_{m-1}(x_1)+\gamma})
对上式直接求导较为复杂,这里的技巧是先使用二阶泰勒公式来近似表示该式,再求导:把 \gamma 作为变量,其余项作为常量的二阶泰勒展开式如下:
L(y_1,F_{m-1}(x_1)+\gamma)\approx L(y_1,F_{m-1}(x_1)) + L'(y_1,F_{m-1}(x_1))\gamma + \frac{1}{2}L''(y_1,F_{m-1}(x_1))\gamma^2
这时再求导就简单了:
\frac{dL}{d\gamma} = L'(y_1,F_{m-1}(x_1)) + L''(y_1,F_{m-1}(x_1))\gamma
Loss 最小时,上式等于 0,于是我们可以求出 \gamma
\gamma_{11} = \frac{-L'(y_1,F_{m-1}(x_1))}{L''(y_1,F_{m-1}(x_1))}
可以看出,上式的分子就是残差 r,下面我们算一下分母,即 Loss 函数的二阶微分:
\begin{aligned} L''(y_1,F(x)) &= \frac{dL'}{d\log(odds)}\\ &=\frac{d}{d\log(odds)}\left[-y_i + \frac{e^{\log(odds)}}{1+e^{\log(odds)}}\right]\\ &=\frac{d}{d\log(odds)}\left[e^{\log(odds)}(1+e^{\log(odds)})^{-1}\right]\\ &=e^{\log(odds)}(1+e^{\log(odds)})^{-1} - e^{2\log(odds)}(1+e^{\log(odds)})^{-2}\\ &=\frac{e^{\log(odds)}}{(1+e^{\log(odds)})^2} \end{aligned}
我们知道,e^{\log(odds)}/(1+e^{\log(odds)}) 就是 p,而 1/(1+e^{\log(odds)}) 是 1-p,所以 L''=p(1-p),那么该节点的输出就是
\gamma_{11} = \frac{r_{11}}{p_{10}(1-p_{10})}=\frac{0.33}{0.67\times0.33} = 1.49
接着我们来计算右边节点的输出,它包含样本 2 和样本 3,同样使用二阶泰勒公式展开:
\begin{aligned} &L(y_2,F_{m-1}(x_2)+\gamma) + L(y_3,F_{m-1}(x_3)+\gamma)\\ &\approx L(y_2,F_{m-1}(x_2)) +L'(y_2,F_{m-1}(x_2))\gamma + \frac{1}{2}L''(y_2,F_{m-1}(x_2))\gamma^2\\ &+L(y_3,F_{m-1}(x_3)) +L'(y_3,F_{m-1}(x_3))\gamma + \frac{1}{2}L''(y_3,F_{m-1}(x_3))\gamma^2 \end{aligned}
对上式求导,令其结果为 0,可以计算 \gamma
\begin{aligned} \gamma_{21} &= \frac{-L'(y_2,F_{m-1}(x_2))-L'(y_3,F_{m-1}(x_3))}{L''(y_2,F_{m-1}(x_2))+L''(y_3,F_{m-1}(x_3))}\\ &=\frac{r_{21}+r_{31}}{p_{20}(1-p_{20}) + p_{30}(1-p_{30})}\\ &=\frac{0.33-0.67}{0.67\times 0.33 + 0.67\times 0.33}\\ &= -0.77 \end{aligned}
这样,(C) 步骤即完成了。可以看出,对任意叶子节点,我们可以直接计算其输出值:
\gamma_{jm} = \frac{\sum_{i=1}^{R_{ij}} r_{im}}{\sum_{i=1}^{R_{ij}} p_{i,m-1}(1-p_{i,m-1})}
(D):更新模型 F_m(x)
F_m(x) = F_{m-1}(x) + \nu \sum_{j=1}^{J_m} \gamma_m
仔细观察该式,实际上它就是梯度下降——「加上残差」和「减去梯度」这两个操作是等价的,这里设学习率 \nu 为 0.1,则 3 个样本更新如下:

样本 喜欢看电影 F_0(x) F_1(x)
1 Yes 0.69 0.69+0.1×(1.49)=0.84
2 Yes 0.69 0.69+0.1×(-0.77)=0.61
3 No 0.69 0.61+0.1×(-0.77)=0.61

可见,样本 1 和样本 3 都离正确的方向更进了一步,虽然样本 2 更远了,但我们可以造更多的树来弥补该差距。

最终,循环 M 次后,或总残差低于预设的阈值时,我们的分类 GBDT 建模便完成了。

总结

本文主要介绍了分类 GBDT 的原理,具体有以下 2 个方面:

  1. 分类 GBDT 的 Loss 函数
  2. 构建分类 GBDT 的详细步骤

本文的公式比较多,但稍加耐心,你会发现它其实并不复杂。

参考:

相关文章:

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,839评论 6 482
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,543评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 153,116评论 0 344
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,371评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,384评论 5 374
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,111评论 1 285
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,416评论 3 400
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,053评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,558评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,007评论 2 325
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,117评论 1 334
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,756评论 4 324
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,324评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,315评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,539评论 1 262
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,578评论 2 355
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,877评论 2 345

推荐阅读更多精彩内容