普通HR做半天的3种数据分析,学会这个,10分钟轻松搞定

人力资源部门作为企业必不可少的部门之一,每年经手的数据量之大、类型之多可想而知。特别是在如今信息爆发式增长的时代,海量数据沉淀的背后是亟待挖掘的数据宝藏。

然而目前大多数人力资源部门还在做传统的“体检型”数据分析,不管有用没用,所有数据来一遍图表,男女比例、学历构成、离职趋势等等,这些有一定价值,但都是泛泛之谈。

众多数据潮流淹没了那些“发光的金子”,真正的大数据分析要的是“治病型”,针对痛楚问题开展分析,利用数据找到病灶,充分发挥人力资源部门的价值。

“如何能把人力资源从成本中心变为为企业盈利部门,让各业务老大们视为自己人,是从业HR多年的我在思考与摸索的。”这是某制造企业的HRBP王同学的目标,并且为之展开了行动,但是现实中却发现诸多瓶颈:

海量数据无法高效处理?

造型企业日常管理中积累了大量数据,其中HR部门尤甚,如培训记录、出勤记录、加班记录、请假记录、招聘面试数据、绩效评价等,每月数据量达2万行;

Excel可以满足部分数据分析,但数据达到一定量级后,很容易造成死机;

数据孤岛阻碍价值探索?

企业投入的诸多系统“各自为战”,同时还存在部门壁垒,形成了数据孤岛;

进行数据分析需要收集多个平台数据进行整理和数据清洗,耗时耗力;

无法实现数据串联,造成数据浪费,隐藏在数据中的价值未被发现,也难识别;

数据如何保证又快又准?

领导临时交代的分析任务,如离职率分析、在职人员经验等数据,为了保证数据实时性,每次都要把之前所有分析过程在走一遍,效率非常低。

为实现个人价值与组织共赢,王同学积极参与企业业务,但光“动嘴皮子”很难去说服别人,更不可信,所以拿“数据”说话是必要的手段。

接下来王同学通过以下三个场景案例分享个人实践过程:

场景1:午餐排队时间过长,是否要调整时间错峰进餐?

公司分两个职场,两地步行约10分钟。主职场有A、B两个食堂供餐,副职场由B食堂送餐。食堂通过刷卡就餐人次同公司结算账款。副职场甲部门同事同后勤反馈就餐排队时间过长,要求更改进餐时间。

一般此类事情领导第一时间会想到让HR处理,加上由于和个人体感不符,所以作为积极主动的HR一枚,王同学同后勤处要了食堂的5个工作日刷卡数据。利用数据来看看实际情况如何:

1、了解每日整体就餐人数,以及各食堂人员分流情况

通过FineBI 导入刷卡就餐数据,关联人事数据后发现就餐人里出现了已经几位离职的伙伴“去而复返”,而且两位是已经离职5个月的人。这是出现了风控问题:首先立刻联系公司IT注销已发现的两人权限;再要求IT核实一年内离职人员权限是否均已失效;同时审核离职流程中权限注销节点是否出现BUG;至于离职人员刷卡消费产生的损失,交由后勤处理。

回到本次要看到的内容,数据显示每天会有约30%的在副职场工作的人员花费20分钟跑去主职场食堂就餐。从就餐人数看甲部门人员远小于乙部门。

2、反映排队的食堂,员工集中就餐时间

从热力图中的趋势线可发现副食堂就餐密集时间为11:28-11:48,甲部门就餐高峰为11:29-11:39,虽有重叠但甲部门人数较少且整体人员就餐时间分散,更改就餐时间影响意义不大。本次事件分析除了能为后勤管理决策提供一定参考意见,同时也发现了潜在的风控问题,发现漏洞及时止损。

场景2:项目多加班长,项目经理要求社招加人,要不要招?

项目经理在月度例会上提出了抱怨,说是近半年项目太多,工程师一直在加班,需要再增加人员,需要HR进行社招。

招不招?招多少?分配给谁?可不是拍脑门就能确定下了的。在同总部申请人头数前,还是要用数据说话,底气足好办事:

1、了解人员负荷情况和各月加班趋势,探究加班是普遍趋势还是个别情况

从近半年加班数据看,人均加班小时数与整体加班小时有下降趋势:

54%的员工加班小时在70h以内,平均到每月约12h,较为正常;

24%的员工加班时间在100-200h,日均加班1.5h,在可接受范围;

超300h的仅3%;

从个人加班排行看,一位仁兄异军突起,且个人申请的加班小时占了个人加班的80%。

从员工加班词云也可直观发现,加班异于常人的只有非常少的小部分人。

2、了解加班严重的是哪些群体

过滤出加班超过300小时的人员:

通过饼图可直观发现工作经验不足3年人员占比50%,这部分人员需识别是技能不足,还是工作负荷较大导致的加班:

如果是技能不足,需要安排辅导与培训;

如果是工作负荷原因,建议酌情安排分工;

从各项目组看,D组加班比例较高。需同业务负责人聊聊是项目阶段情况,还是人员不足。

各项目组还有部分“准点下班人员”,大家雨露均沾下,是否可行?

基于以上分析,针对业务要求加人的请求,暂时先进行人员储备,如持续高水平加班,则适当进行人员补充或采用借调方式补充“人力”,针对识别出的几个“异常点” ,核算后采取临时支持措施。

场景3:员工离职原因必选“晋升困难”,到底有多难?

离职检查单中离职原因“晋升原因”基本是必填选项。离职面谈时员工也会就这点”深入浅出”聊聊。聊天吐槽后,数据汇总完,就真的完事了?领导问你离职原因,你直接来句“晋升困难”信不信领导瞪你。而且从信度与效度的角度,简单的离职检查单是不够的。考虑如下两点分析:

1、考虑基数与受众因素聚焦主管级,从人事档案中抓取从入职到晋升主管的时间

从各部门人员晋升到主管需时间排行来看,最难的当属战略部,而生产部门相对较好,所需时间均低于平均值。

公司整体与项目部晋升时间对比看,项目部人员晋升所需最大时间远小于公司整体,但项目部仍处于最难提升的TOP5内,从数据层面印证了员工反馈的“晋升难”问题。

从人员年龄与工作经验维度对比,“年轻人”更容易晋升,公司晋升政策对此有一定影响。从人员激励与保留角度,建议公司仍需考虑“年龄较大,经验丰富”的基层人员激励方案。

PS:由于绩效为晋升硬性要求,不具有分析对比价值,在此未单独罗列。

2、公司晋升时间现状如何,均值与中位值情况与影响因素

“晋升”作为人员保留的手段之一,可谓企业为数不多的杀手锏。但从数据对比中发现,仍会有10%人员在晋升后选择离职,离职日期与晋升时间相距不足1年。是我们晋升决策过于冗长,还是对晋升人员没给予足够的培训辅导,是需政策制定者反思与深究的。

总结

“通过BI的自助数据集,只需一次数据编辑,制作仪表板,后面每月更新文件,上传更新Excel数据就行,更便捷。领导临时交代的任务,也能很快的交付,并且提供更多维度的选择。

通过数据的分析和拆解组合,能看到之前忽略的信息,比如高加班时间的人员构成中高年龄段人员数量占比很高,这是很大的企业用工风险项。BI助力我们识别企业发展道路上的坑。”

通过王同学的分享,我们发现即使是没有任何基础的业务人员也能轻松上手FineBI,通过自助数据集创建,业务人员可以轻松获得自己需要的数据,进行自主分析。如果您或您的团队在数据工作中,也面临类似的情况,不妨和王同学一样加入BI工程师从入门到精通实战班的行列,学习FineBI工具的操作使用和数据分析的方法。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 202,607评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,047评论 2 379
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 149,496评论 0 335
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,405评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,400评论 5 364
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,479评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,883评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,535评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,743评论 1 295
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,544评论 2 319
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,612评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,309评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,881评论 3 306
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,891评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,136评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,783评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,316评论 2 342

推荐阅读更多精彩内容