[开篇四:Python零散知识拾荒之深浅拷贝]2018-11-06

Python当中对于拷贝,分为两种类型。一种是数字和字符串,另一种就是列表、元组、字典等其他类型了。

一、数字和字符串的拷贝

1、赋值

举个栗子:

a1 = 123123
a2 = 123123
# a2 = a1  # 赋值
print(id(a1))  # 通过id()函数来打印变量在内存当中的地址
print(id(a2))

输出结果是:

1959780298352
1959780298352 

  在以上代码块当中,a2与a1所赋的值是一样的,都是数字123123。因为python有一个重用机制,对于同一个数字,python并不会开辟一块新的内存空间,而是维护同一块内存地址,只是将该数字对应的内存地址的引用赋值给变量a1和a2。所以根据输出结果,a1和a2其实对应的是同一块内存地址,只是两个不同的引用罢了。同样的,对于a2 = a1,其实效果等同于“a1 = 123123; a2 = 123123”,它也就是将a1指向123123的引用赋值给a2。字符串跟数字的原理雷同,如果把123123改成“abcabc”也是一样的。*

结论:对于通过用 = 号赋值,数字和字符串 在内存当中用的都是同一块地址。

2、浅拷贝

import copy  # 使用浅拷贝需要导入copy模块
 
a1 = 123123
a3 = copy.copy(a1)  # 使用copy模块里的copy()函数就是浅拷贝了
print(id(a1))
print(id(a3))

输出结果是:

35233168
35233168

  通过使用copy模块里的copy()函数来进行浅拷贝,把a1拷贝一份赋值给a3,查看输出结果发现,a1和a3的内存地址还是一样。

结论:对于浅拷贝,数字和字符串在内存当中用的也是同一块地址。

3、深拷贝

举个栗子:

import copy

a1 = 123123
a4 = copy.deepcopy(a1)  # 深拷贝是用copy模块里的deepcopy()函数
print(id(a1))
print(id(a4))

输出结果为:

31432080
31432080

查看结果发现,对于深拷贝,数字和字符串在内存当中用的也是同一块地址。

所以综上所述,对于数字和字符串的赋值、浅拷贝、深拷贝在内存当中用的都是同一块地址。原理如下图:

image

二、字典、列表、元组等其他类型的拷贝

1、赋值

举个栗子:

n1 = {"k1": "wu", "k2": 123, "k3": ["alex", 678]}
n2 = n1  # 赋值
print(id(n1))
print(id(n2))

输出结果:

2235551677536
2235551677536

  我们的栗子当中用了一个字典n1,字典里面嵌套了一个列表,当我们把n1赋值给n2时,内存地址并没有发生变化,因为其实它也是只是把n1的引用拿过来赋值给n2而已。(我们用了一个字典来举例,其他类型也是一样的)

原理如下图:

image.png

结论:对于赋值,字典、列表、元组等其他类型用的内存地址不会变化。

2、浅拷贝

举个栗子:

import copy

n1 = {"k1": "wu", "k2": 123, "k3": ["alex", 678]}
n3 = copy.copy(n1)  # 浅拷贝
print("第一层字典的内存地址:")
print(id(n1))
print(id(n3))
print("第二层嵌套的列表的内存地址:")
print(id(n1["k3"]))
print(id(n3["k3"]))

输出结果:

第一层字典的内存地址:
6516024
6516096
第二层嵌套的列表的内存地址:
36995720
36995720

  通过以上结果可以看出,进行浅拷贝时,我们的字典第一层n1和n3指向的内存地址已经改变了,但是对于第二层里的列表并没有拷贝,它的内存地址还是一样的。原理如下图:

image

结论:所以对于浅拷贝,字典、列表、元组等类型,它们只拷贝第一层地址

3、深拷贝

举个栗子:

import copy

n1 = {"k1": "wu", "k2": 123, "k3": ["alex", 678]}
n4 = copy.deepcopy(n1)  # 深拷贝
print("第一层字典的内存地址:")
print(id(n1))
print(id(n4))
print("第二层嵌套的列表的内存地址:")
print(id(n1["k3"]))
print(id(n4["k3"]))

输出结果:

第一层字典的内存地址:
31157560
35463600
第二层嵌套的列表的内存地址:
35947144
35947336

  通过以上结果发现,进行深拷贝时,字典里面的第一层和里面嵌套的地址都已经变了。对于深拷贝,它会拷贝多层,将第二层的列表也拷贝一份,如果还有第三层嵌套,那么第三层的也会拷贝,但是对于里面的最小元素,比如数字和字符串,这里就是“wu”,123,“alex”,678之类的,按照python的机制,它们会共同指向同一个位置,它的内存地址是不会变的。原理如下图:

image

结论:对于深拷贝,字典、列表、元组等类型,它里面嵌套多少层,就会拷贝多少层出来,但是最底层的数字和字符串地址不变。

举个实际应用场景的栗子。

我们在维护服务器信息的时候,经常会要更新服务器信息,这时我们重新一个一个添加是比较麻烦的,我们可以把原数据类型拷贝一份,在它的基础上做修改。

栗子一、使用浅拷贝

import copy


dic = {
    "cpu": [80, ],
    "mem": [80, ],
    "disk": [80, ]
}
# 定义了一个字典,存储服务器信息。
print('before', dic)
new_dic = copy.copy(dic)
new_dic['cpu'][0] = 50  # 更新cpu为50
print(dic)
print(new_dic)

输出结果为:

before {'cpu': [80], 'mem': [80], 'disk': [80]}
{'cpu': [50], 'mem': [80], 'disk': [80]}
{'cpu': [50], 'mem': [80], 'disk': [80]}

这时我们会发现,使用浅拷贝时,我们修改新的字典的值之后,原来的字典里面的cpu值也被修改了,这并不是我们希望看到的。

栗子二、使用深拷贝

import copy


dic = {
    "cpu": [80, ],
    "mem": [80, ],
    "disk": [80, ]
}
print('before', dic)
new_dic = copy.deepcopy(dic)
new_dic['cpu'][0] = 50
print(dic)
print(new_dic)

输出结果:

before {'cpu': [80], 'mem': [80], 'disk': [80]}
{'cpu': [80], 'mem': [80], 'disk': [80]}
{'cpu': [50], 'mem': [80], 'disk': [80]}

  使用深拷贝的时候,发现只有新的字典的cpu值被修改了,原来的字典里面的cpu值没有变。大功告成!

总结

  • 赋值(=):数据完全共享(赋值是在内存中指向同一个对象,如果是可变(mutable)类型,比如列表,修改其中一个,另一个必定改变;如果是不可变类型(immutable),比如字符串,修改了其中一个,另一个并不会变)
  • 浅拷贝:数据半共享(复制其数据独立内存存放,但是只拷贝成功第一层)
  • 深拷贝:数据完全不共享(复制其数据完完全全放独立的一个内存,完全拷贝,数据不共享);深拷贝就是完完全全复制了一份,且数据不会互相影响,因为内存不共享。
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,293评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,604评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,958评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,729评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,719评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,630评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,000评论 3 397
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,665评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,909评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,646评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,726评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,400评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,986评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,959评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,197评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,996评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,481评论 2 342

推荐阅读更多精彩内容

  • 可变(mutable)和不可变(immutable)参数 不可变对象在进行重新赋值的时候,实际上是将原始值丢弃,将...
    楼程智阅读 1,206评论 1 1
  • 1.ios高性能编程 (1).内层 最小的内层平均值和峰值(2).耗电量 高效的算法和数据结构(3).初始化时...
    欧辰_OSR阅读 29,299评论 8 265
  • Swift1> Swift和OC的区别1.1> Swift没有地址/指针的概念1.2> 泛型1.3> 类型严谨 对...
    cosWriter阅读 11,084评论 1 32
  • php -m windows 下查看php已开启的拓展 GMP是The GNU MP Bignum Libra...
    jianghu000阅读 2,334评论 0 0
  • 俗话说救人一命,胜造七级浮屠 一、 月圆之夜,大部分的人都已早早下班,和自己的亲朋好友聚在一起,聊天喝酒赏圆月。然...
    2B绘画铅笔阅读 299评论 1 0