通过对面试题的分析探索问题的本质内容
Class的本质
我们知道不管是类对象还是元类对象,类型都是Class,class和mete-class的底层都是objc_class结构体的指针,内存中就是结构体,本章来探寻Class的本质
Class objectClass = [NSObject class];
Class objectMetaClass = object_getClass([NSObject class]);
点击Class来到内部,我们可以发现
typedef struct objc_class *Class;
Class对象其实是一个指向objc_class结构体的指针。因此我们可以说类对象或元类对象在内存中其实就是objc_class结构体。
我们来到objc_class内部,可以看到这段在底层原理中经常出现的代码。
struct objc_class {
Class _Nonnull isa OBJC_ISA_AVAILABILITY;
#if !__OBJC2__
Class _Nullable super_class OBJC2_UNAVAILABLE;
const char * _Nonnull name OBJC2_UNAVAILABLE;
long version OBJC2_UNAVAILABLE;
long info OBJC2_UNAVAILABLE;
long instance_size OBJC2_UNAVAILABLE;
struct objc_ivar_list * _Nullable ivars OBJC2_UNAVAILABLE;
struct objc_method_list * _Nullable * _Nullable methodLists OBJC2_UNAVAILABLE;
struct objc_cache * _Nonnull cache OBJC2_UNAVAILABLE;
struct objc_protocol_list * _Nullable protocols OBJC2_UNAVAILABLE;
#endif
} OBJC2_UNAVAILABLE;
/* Use `Class` instead of `struct objc_class *` */
这部分代码相信在文章中很常见,但是OBJC2_UNAVAILABLE
说明这些代码已经不在使用了。那么目前objc_class的结构是什么样的呢?我们通过objc源代码中去查找objc_class结构体的内容。
部分objc_class代码如下:
struct objc_class : objc_object {
// Class ISA;
Class superclass;
cache_t cache; // formerly cache pointer and vtable
class_data_bits_t bits; // class_rw_t * plus custom rr/alloc flags
class_rw_t *data() {
return bits.data();
}
void setData(class_rw_t *newData) {
bits.setData(newData);
}
//后面代码省略
....
};
我们发现这个结构体继承 objc_object 并且结构体内有一些函数,因为这是c++结构体,在c上做了扩展,因此结构体中可以包含函数。我们来到objc_object内,截取部分代码
我们发现objc_object中有一个isa指针,那么objc_class继承objc_object,也就同样拥有一个isa指针
那么我们之前了解到的,类中存储的类的成员变量信息,实例方法,属性名等这些信息在哪里呢。我们来到class_rw_t中,截取部分代码,我们发现class_rw_t中存储着方法列表,属性列表,协议列表等内容。
struct class_rw_t {
// Be warned that Symbolication knows the layout of this structure.
uint32_t flags; // 标记
uint32_t version; // 版本信息
const class_ro_t *ro;
method_array_t methods; // 方法列表
property_array_t properties; // 属性列表
protocol_array_t protocols; // 协议列表
Class firstSubclass;
Class nextSiblingClass;
char *demangledName;
#if SUPPORT_INDEXED_ISA
uint32_t index;
#endif
// 后面代码省略
...
}
而class_rw_t是通过bits调用data方法得来的,我们来到data方法内部实现。我们可以看到,data函数内部仅仅对bits进行&FAST_DATA_MASK操作
struct objc_class : objc_object {
// Class ISA;
Class superclass;
cache_t cache; // formerly cache pointer and vtable
class_data_bits_t bits; // class_rw_t * plus custom rr/alloc flags
class_rw_t *data() {
return bits.data();
}
// 后面源码省略
...
}
点击 return bits.data()来到
public:
class_rw_t* data() {
return (class_rw_t *)(bits & FAST_DATA_MASK);
}
而成员变量信息则是存储在class_ro_t内部中的,我们来到class_ro_t源码
struct class_ro_t {
uint32_t flags;
uint32_t instanceStart;
uint32_t instanceSize; // 实例大小
#ifdef __LP64__
uint32_t reserved;
#endif
const uint8_t * ivarLayout;
const char * name;// 类名
method_list_t * baseMethodList;
protocol_list_t * baseProtocols;
const ivar_list_t * ivars; // 成员变量列表
const uint8_t * weakIvarLayout;
property_list_t *baseProperties;
// This field exists only when RO_HAS_SWIFT_INITIALIZER is set.
_objc_swiftMetadataInitializer __ptrauth_objc_method_list_imp _swiftMetadataInitializer_NEVER_USE[0];
_objc_swiftMetadataInitializer swiftMetadataInitializer() const {
if (flags & RO_HAS_SWIFT_INITIALIZER) {
return _swiftMetadataInitializer_NEVER_USE[0];
} else {
return nil;
}
}
method_list_t *baseMethods() const {
return baseMethodList;
}
class_ro_t *duplicate() const {
if (flags & RO_HAS_SWIFT_INITIALIZER) {
size_t size = sizeof(*this) + sizeof(_swiftMetadataInitializer_NEVER_USE[0]);
class_ro_t *ro = (class_ro_t *)memdup(this, size);
ro->_swiftMetadataInitializer_NEVER_USE[0] = this->_swiftMetadataInitializer_NEVER_USE[0];
return ro;
} else {
size_t size = sizeof(*this);
class_ro_t *ro = (class_ro_t *)memdup(this, size);
return ro;
}
}
};
从64位cup架构(即iPhone5s)开始,isa需要进行一次位运算,才能计算出真实的地址
最后我们用一张图来总结
文中如有总结不对、不到位的地方欢迎指出。谢谢~