图像灰度变换

1.灰度变换指对图像的单个像素进行操作,主要以对比度和阈值处理为目的。其变换形式如下。

s=T(r)

其中,T 是灰度变换函数;r 是变换前的灰度;s 是变换后的像素。

2.图像灰度变换的有以下作用:

  •  改善图像的质量,使图像能够显示更多的细节,提高图像的对比度(对比度拉伸)

  •  有选择的突出图像感兴趣的特征或者抑制图像中不需要的特征

  •  可以有效的改变图像的直方图分布,使像素的分布更为均匀

灰度变换函数描述了输入灰度值和输出灰度值之间变换关系,一旦灰度变换函数确定下来了,那么其输出的灰度值也就确定了。可见灰度变换函数的性质就决定了灰度变换所能达到的效果。

3.用于图像灰度变换的函数主要有以下三种:

•  线性函数 (图像反转)

•  对数函数: 对数和反对数变换

•  Gamma变换:n次幂和n次开方变换

•  分段线性变换

上图给出了几种常见灰度变换函数的曲线图,根据这几种常见函数的曲线形状,可以知道这几种变换的所能达到的效果。例如,对数变换和幂律变换都能实现图像灰度级的扩展/压缩,另外对数变换还有一个重要的性质,它能压缩图像灰度值变换较大的图像的动态范围(例如,傅立叶变换的频谱显示)。

3.1线性变换

令 r 为变换前的灰度,s为变换后的灰度,则线性变换的函数:

s=ar+b

其中,a 为直线的斜率,b 为在 y 轴的截距。选择不同的 a,b 值会有不同的效果:

•  a > 1,增加图像的对比度

•  a < 1,减小图像的对比度

•  a = 1 且 b\neq 0,图像整体的灰度值上移或者下移,也就是图像整体变亮或者变暗,不会改变图像的对比度。

•  a < 0 且 b = 0,图像的亮区域变暗,暗区域变亮

•  a = 1 且 b = 0,恒定变换,不变

•  a = −1 且 b = 255,图像反转。

在进行图像增强时,上述的线性变换函数用的较多的就是图像反转了,根据上面的参数,图像反转的变换函数为:s = 255 − s。图像反转得到的是图像的负片,能够有效的增强在图像暗区域的白色或者灰色细节。

3.2对数变换

对数变换的通用公式是:

s=log(r+1)/b

其中,b是一个常数,用来控制曲线的弯曲程度,其中,b越小越靠近y轴,b越大越靠近x轴。

假设 r ≥ 0,根据上图中的对数函数的曲线可以看出:对数变换,将源图像中范围较窄的低灰度值映射到范围较宽的灰度区间,同时将范围较宽的高灰度值区间映射为较窄的灰度区间,从而扩展了暗像素的值,压缩了高灰度的值,能够对图像中低灰度细节进行增强。;从函数曲线也可以看出,反对数函数的曲线和对数的曲线是对称的,在应用到图像变换其结果是相反的,反对数变换的作用是压缩灰度值较低的区间,扩展高灰度值的区间。

3.3伽马变换

基于幂次变换的Gamma校正是图像处理中一种非常重要的非线性变换,它与对数变换相反,它是对输入图像的灰度值进行指数变换,进而校正亮度上的偏差。通常Gamma校正应用于拓展暗调的细节。伽马变换的公式为:

s=cr^\gamma

其中c和 γ为正常数.,伽马变换的效果与对数变换有点类似,当 γ <1时将较窄范围的低灰度值映射为较宽范围的灰度值,同时将较宽范围的高灰度值映射为较窄范围的灰度值;当 γ >1时,情况相反,与反对数变换类似。

当γ<1时,图像的暗调部分被扩展而高光部分被压缩,γ的值越小,对图像低灰度值的扩展越明显;当γ>1时,图像的高光部分被扩展而暗调部分被压缩,γ的值越大,对图像高灰度值部分的扩展越明显。这样就能够显示更多的图像的低灰度或者高灰度细节。

当γ<1时,低灰度区域动态范围扩大,进而图像对比度增强,高灰度值区域动态范围减小,图像对比度降低,图像整体灰度值增大,此时与图像的对数变换类似。

γ>1时,低灰度区域的动态范围减小进而对比度降低,高灰度区域动态范围扩大,图像的对比度提升,图像的整体灰度值减小,Gamma校正主要应用在图像增强。

总之,γ<1的幂函数的作用是提高图像暗区域中的对比度,而降低亮区域的对比度;γ>1的幂函数的作用是提高图像中亮区域的对比度,降低图像中按区域的对比度。所以Gamma变换主要用于图像的校正,对于灰度级整体偏暗的图像,可以使用γ<1的幂函数增大动态范围。对于灰度级整体偏亮的图像,可以使用γ>1的幂函数增大灰度动态范围。

3.4分段线性变换

   分段线性变换也是一种重要的灰度级变换。对于曝光不足,曝光过度和传感器动态范围都会造成图像表现出低对比度的特征。分段线性变换的作用是提高图像灰度级的动态范围。通常来说,通过截断一定比例的最亮像素和最暗像素,并使得中间亮度像素占有整个灰度级,能够提高图像的全局对比度。通常称之为对比度拉伸、直方图裁剪,目前广泛的应用于图像后期处理中。

3.4.1对比度拉伸技术

  图像的对比度拉伸是通过扩展图像灰度级动态范围来实现的,它可以扩展对应的全部灰度范围。图像的低对比度一般是由于图像图像成像亮度不够、成像元器件参数限制或设置不当造成的。提高图像的对比度可以增强图像各个区域的对比效果,对图像中感兴趣的区域进行增强,而对图像中不感兴趣的区域进行相应的抑制作用。对比度拉伸是图像增强中的重要的技术之一。这里设点(x1,y1)与(x2,y2)是分段线性函数中折点位置坐标。常见的三段式分段线性变换函数的公式如下:

需要注意的是,分段线性一般要求函数是单调递增的,目的是防止图像中的灰度级不满足一一映射。分段的灰度拉伸技术可以结合直方图处理技术,从而更加灵活地控制输出图像的直方图分布,对特定感兴趣的区域进行对比度调整,增强图像画质。对于图像灰度集中在较暗的区域,可以采用斜率k>0来进行灰度拉伸扩展;对于图像中较亮的区域,可以采用修了k<0来进行灰度拉伸压缩。

3.4.2灰度级分层(二值法)

  灰度级分层的处理可以突出特定灰度范围的亮度,可以应用于增强某些特征。将感兴趣范围内的所有灰度值显示位一个值(如白色),而将其他灰度值显示为另外一个值(如黑色),最后将产生一副二值图像。

3.4.3比特平面分层

  像素是由比特组成的竖直。例如,在256级灰度图像中,每个像素的灰度是由8bit组成,替代突出灰度级范围,我们可以突出比特来突出整个图像的外观。一副8比特灰度图可考虑分层1到8个比特平面。很容易理解的是,4个高阶比特平面,特别是最后两个比特平面,包含了在视觉上很重要的大多数数据。而低阶比特平面则在图像上贡献了更精细的灰度细节。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,189评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,577评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,857评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,703评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,705评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,620评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,995评论 3 396
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,656评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,898评论 1 298
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,639评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,720评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,395评论 4 319
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,982评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,953评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,195评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,907评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,472评论 2 342