机器学习----朴素贝叶斯算法浅析和spark MLlib实现

文/michael

前言

最近研究下Machaine Learning,这篇文章作为开始吧。

贝叶斯

贝叶斯(Bayes)算法是什么?

我们在大学时都知道概率论吧,条件概率,贝叶斯定理

  • P( A|B )表示在事件B发生的前提下A事件发生的概率:


  • 而贝叶斯定理我们直接给出:


贝叶斯定理之所以有用,是因为我们在生活中经常遇到这种情况:我们可以很容易直接得出P(A|B),P(B|A)则很难直接得出,但我们更关心P(B|A)

朴素贝叶斯分类

朴素贝叶斯分类是一种十分简单的分类算法,朴素贝叶斯思想:对于给出的特定的features,求解在此项出现条件下各个类别出现的概率,哪个概率最大就属于那个类别。

  • *先验概率P(A)就是A的先验概率
    bayes朴素分类基本步骤:
x特征属性 训练样本(x1,x2,x3...) 数据准备阶段
计算每个类别的先验概率 p(y<small>i</small>) train阶段
计算各类别下的各个特征属性的条件概率 p(a<small>j</small> / y<small>i</small> ) train阶段
计算样本属于每个类别的概率 p(x / y<small>i</small>)p(y<small>i</small>) predict阶段
取最大项最为x的分类类别 max( p(x / y<small>i</small>)p(y<small>i</small>)) predict阶段

- _ - 来个直观的

我们这次不用spark的example的data(因为实在不知道代表什么意思)。
我们自己编点吧~

sample_football_weather.txt:

日期|踢足球|天气|温度|湿度|风速|
----|------|----
1,2,3,4...|是(1)否(0)| 晴天(0)阴天(1)下雨(2)|热(0)舒适(1)冷(2)|不适(0)适合(1)|低(0)高(1)

由于MLlib对数据的格式有严格的要求
主要是classification.{NaiveBayes,NaiveBayesModel}的要求data format:
类别,特征1 特征2 特征3.....

数据截图

训练代码(scala)


import org.apache.spark.mllib.classification.{NaiveBayes,NaiveBayesModel}
import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.{SparkContext,SparkConf}

object NaiveBayes {
    def main(args: Array[String]): Unit = {
        val conf = new SparkConf()
            .setMaster("local")
            .setAppName("NaiveBayes")
            val sc = new SparkContext(conf)
            val path = "../data/sample_football_weather.txt"
            val data = sc.textFile(path)
            val parsedData =data.map { 
                line =>
                val parts =line.split(',')
                LabeledPoint(parts(0).toDouble,Vectors.dense(parts(1).split(' ').map(_.toDouble)))
            }
            //样本划分train和test数据样本60%用于train
            val splits = parsedData.randomSplit(Array(0.6,0.4),seed = 11L)
            val training =splits(0)
            val test =splits(1)
            //获得训练模型,第一个参数为数据,第二个参数为平滑参数,默认为1,可改变
            val model =NaiveBayes.train(training,lambda = 1.0)
            //对测试样本进行测试
            //对模型进行准确度分析
            val predictionAndLabel= test.map(p => (model.predict(p.features),p.label))
            val accuracy =1.0 *predictionAndLabel.filter(x => x._1 == x._2).count() / test.count()
        //打印一个预测值
            println("NaiveBayes精度----->" + accuracy)
            //我们这里特地打印一个预测值:假如一天是   晴天(0)凉(2)高(0)高(1) 踢球与否
            println("假如一天是   晴天(0)凉(2)高(0)高(1) 踢球与否:" + model.predict(Vectors.dense(0.0,2.0,0.0,1.0)))

            //保存model
            val ModelPath = "../model/NaiveBayes_model.obj"
            model.save(sc,ModelPath)
            //val testmodel = NaiveBayesModel.load(sc,ModelPath)
    }
}

代码提示:

  • randomSplit
    def randomSplit(weights: Array[Double], seed: Long =Utils.random.nextLong): Array[RDD[T]]
    该函数根据weights权重,将一个RDD切分成多个RDD。该权重参数为一个Double数组第二个参数为random的种子,基本可忽略。
  • 保存model
    继承于NaiveBayesModel 的model.save和load方法,存成对象方便下次使用,(注意python API 可不支持这个用法,所以写spark推(yi)荐(ding)要用scala)
  • val model =NaiveBayes.train(training,lambda = 1.0)
    这个高度封住的计算公式是不是看的非常棒呀~
    我们来试着看看里面有什么
    详细算法我也是看的这个blog
    我自己也写了点(字有点难看,,好久不动笔了)

给学习步骤中的两个概率计算公式,分子和分母都分别加上一个常数,就可以避免。这个方法称为拉普拉斯平滑
也就是代码中的NaiveBayes.train(training,lambda = 1.0)
也可以看看这个blog写的很好,其中也有一个更高端的文本分类训练

测试

我们究竟能不能相信计算机的结果呢
就是我们的“假如一天是 晴天(0)凉(2)高(0)高(1) 踢球与否”问题
我们来手动算算:

P(踢)=9/14 #所有数据中踢球的占比
P(晴天|踢)=2/9 #所有踢球的是晴天的占比,后面以此类推
P(凉爽|踢)=3/9
P(湿度高|踢)=3/9
P(风速高|踢)=3/9
P(踢)* P(晴天|踢)* P(凉爽|踢)* P(湿度高|踢) *P(风速高|踢)=0.0053
-----------------------------------------萌萌哒分割线------------------------------------------
P(不踢)=5/14
P(晴天|不踢)=3/5
P(凉爽|不踢)=1/5
P(湿度高|不踢)=4/5
P(风速高|不踢)=3/5

P(不踢)* P(晴天|不踢)* P(凉爽|不踢)* P(湿度高|不踢) *P(风速高|不踢)=0.02057

可以看到 P(不踢) > P(踢) 所以我们println的结果也是

NaiveBayes精度-----> 0.75    #这个好像不太高,数据量上去就好了。
假如一天是   晴天(0)凉(2)高(0)高(1) 踢球与否:0.0

结语

其实现在machine learning的工具很多,tensoflow等。。。工具代码什么都是高度封装的,重要的是里面的算法,博主的线代,概率论一般,但不想当架构师的程序员不是好的相声演员啊~
可以看到ML的难度还是有的,共勉~

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,179评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,229评论 2 380
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,032评论 0 336
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,533评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,531评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,539评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,916评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,574评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,813评论 1 296
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,568评论 2 320
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,654评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,354评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,937评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,918评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,152评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,852评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,378评论 2 342

推荐阅读更多精彩内容