ggplot2绘制物种组成图

本节我们来绘制微生物的物种组成图;先通过phyloseq包整合数据,之后利用MicrobiotaProcess包绘制门水平物种组成图,最后通过ggplot2自定义绘制物种组成图,喜欢的小伙伴可以关注我的公众号R语言数据分析指南,后台回复关键词物种组成图获取全部数据及代码。

加载必须R包

rm(list=ls())
library(pacman)
library(magrittr)
library(reshape2)
pacman::p_load(tidyverse,phyloseq,MicrobiotaProcess,ape)

整合数据

otu_mat <- read.delim2("otu_table.tsv",header=T,
                       sep="\t",check.names = F,row.names = 1) %>%
  as.matrix()

tax_mat <- read.delim("taxa.xls",header=T,row.names = 1,
                      sep="\t",check.names = F) %>% as.matrix()
samples_df <- read.delim("group.xls",header = T,row.names = 1,
                         sep="\t",check.names = F)
tree <- read.tree("rooted_tree.tre")

OTU = otu_table(otu_mat,taxa_are_rows =T)
TAX = tax_table(tax_mat)
samples = sample_data(samples_df)

ps <- phyloseq(OTU,TAX,samples,tree)
ps
> ps
phyloseq-class experiment-level object
otu_table()   OTU Table:         [ 3761 taxa and 12 samples ]
sample_data() Sample Data:       [ 12 samples by 1 sample variables ]
tax_table()   Taxonomy Table:    [ 3761 taxa by 7 taxonomic ranks ]
phy_tree()    Phylogenetic Tree: [ 3761 tips and 3760 internal nodes ]

MicrobiotaProcess包进行数据可视化

phytax <- get_taxadf(obj=ps, taxlevel=2)

phybar <- ggbartax(obj=phytax,facetNames="group", count=FALSE) +
  xlab(NULL) + ylab("relative abundance (%)")+
  theme(axis.text.x=element_text(face="plain",
                                 color="black",hjust=0.8,vjust=0.6,
                                 size=9, angle=90))+
  theme(strip.text.x = element_text(size=8, color="black",
                                    face="plain"))+
  theme(legend.position="right")
phybar

ggplot2自定义绘图

定义颜色

colors <-c("#E41A1C","#1E90FF","#FF8C00","#4DAF4A","#984EA3",
           "#40E0D0","#FFC0CB","#00BFFF","#FFDEAD","#90EE90",
           "#EE82EE","#00FFFF","#F0A3FF", "#0075DC", 
           "#993F00","#4C005C","#2BCE48","#FFCC99",
           "#808080","#94FFB5","#8F7C00","#9DCC00",
           "#C20088","#003380","#FFA405","#FFA8BB",
           "#426600","#FF0010","#5EF1F2","#00998F",
           "#740AFF","#990000","#FFFF00")

导出门水平物种数据

p <- phyloseq::otu_table(phytax) %>% as.data.frame()
write.table (p,file ="phylumt.xls", sep ="\t",col.names = NA)

将丰度小于1%的归类于others

computed_persent <- function(path) {
  data <- path %>%
    read.delim(check.names = FALSE, row.names = 1)
  data2 <- data %>%
    mutate(sum = rowSums(.), persent = sum / sum(sum) * 100, 
sum = NULL,) %>%
    rbind(filter(., persent < 1) %>% colSums()) %>%
    mutate(OTU_ID = c(data %>% rownames(), "others"))
  filter(data2[1:(nrow(data2) - 1),], persent > 1) %>%
    rbind(data2[nrow(data2),]) %>%
    select(ncol(.), 1:(ncol(.) - 2)) %>%
    set_rownames(seq_len(nrow(.))) %>%
    return()
}

path <- "phylumt.xls"

数据整合

a1 <- computed_persent(path) %>% melt()
a2 <- "group.xls" %>% read.delim()
a4 <- NULL

for (i in seq_len(nrow(a1))) { 
  a4[i] <- a2[which(a2[, 1] == a1[i, 2]), 2] }

a1[, 4] <- a4
a1

数据可视化

ggplot(a1,aes(variable,value,fill=OTU_ID))+
  geom_bar(stat="identity",position = "fill")+
  facet_grid(. ~ V4,scales = "free",space="free_x")+
  labs(x="",y="Proportions")+
  scale_fill_manual(values = colors)+labs(fill="")+
  theme(legend.title=element_blank())+
  scale_y_continuous(expand=c(0,0))+theme_bw()
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,530评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 86,403评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,120评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,770评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,758评论 5 367
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,649评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,021评论 3 398
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,675评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,931评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,659评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,751评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,410评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,004评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,969评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,203评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,042评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,493评论 2 343

推荐阅读更多精彩内容