Chapter12 通过样本求总体均值或比例的置信区间

样本均值、比例等于总体均值、比例的点估计量,这是无偏样本最可能的情况。但是这一情况仍有可能是错误的,因为毕竟是一个样本的结果。
置信区间:总体统计量在某一区间内的可信程度,这一区间成为置信区间。

如何从样本推导出总体统计量的置信区间

1.如何从样本推算总体均值的置信区间

image.png

当样本数量很大时,均值的抽样分布符合正态分布,均值抽样分布的期望为总体的均值。均值的抽样分布中:事件X为一个个样本均值。
标准正态分布常用置信区间与上下限的关系如下:

置信水平 标准正态分布的置信区间
90% [-1.64,1.64]
95% [-1.96,1.96]
99% [-2.58,2.58]

假设选择的置信水平95%,则:
\frac{x-\mu }{\sigma_{抽样分布} } 在[-1.96,1.96]之间时置信水平为95% ,即(X-u)/sigma \frac{x-\mu }{\sigma_{抽样分布} } 95%置信水平的置信区间为[-1.96,1.96]之间。
\mu是均值抽样分布的期望:
\mu=E((X1+X2+ Xn)/n) = E(Xi)
Xi为总体的独立观测值,E(Xi)是每个Xi的期望,为总体的均值。

所以,抽样分布的\mu即是待求总体的均值

因为 \frac{x-\mu }{\sigma_{抽样分布} }在区间[-1.96,1.96] (95%置信水平下)
所以总体均值\mu = x-\sigma_{抽样分布} *[-1.96,1.96]在这一范围内可能性为95%
X为一个个的样本均值。
\sigma_{抽样分布} = \sqrt{\sigma^2/n}为均值抽样分布的标准差 ,其中\sigma^2是总体的方差。

2.如何从样本推算总体成功比例的置信区间

样本成功比例为Ps = Xs/n ~N(p, pq/n) (n>30),
其中Xs~B(n,p), p为总体成功的概率。

样本成功比例抽样分布的期望为p,即总体的成功比例

样本成功比例抽样分布中事件X为一个个比例样本Ps
(X-p)/\sigma_{抽样分布} 95%置信水平的置信区间为[-1.96,1.96]之间。
所以总体成功比例 p = Ps-\sigma_{抽样分布}*[-1.96,1.96]在这一范围内可能性为95%。\sigma_{抽样分布}=\sqrt{pq/n},可以用某一次的Ps ,Qs = 1-Ps近似代替p和q。

总的来说就是求抽样分布的均值(期望)的范围,利用某一次抽样的均值或比例,以及抽样分布的方差来计算其范围。

当样本很小,总体方差未知时,需要通过样本估计总体方差,而小样本估计方差会偏小很多,因此不能近似为正态分布。
此时X均值的分布符合t分布,自由度V = n-1,n越小,v越小,t分布的形态越扁平。用样本方差s^2估计总体方差\sigma ^2
t分布的标准分为:T= \frac{\bar{X}-\mu}{s/\sqrt{n}}
通过置信区间,查表的标准分T的区间,X的均值为样本均值,s为样本方差(估计总体的方差),n样本大小已知,可以推算出总体均值u的范围。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,921评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,635评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,393评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,836评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,833评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,685评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,043评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,694评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 42,671评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,670评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,779评论 1 332
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,424评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,027评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,984评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,214评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,108评论 2 351
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,517评论 2 343

推荐阅读更多精彩内容