OkHttp请求的核心处理就是这一系列的拦截链
Response getResponseWithInterceptorChain() throws IOException {
// Build a full stack of interceptors.
//建立一个完整的拦截器堆栈。
List<Interceptor> interceptors = new ArrayList<>();
//OkHttp初始化添加的拦截器
interceptors.addAll(client.interceptors());
interceptors.add(retryAndFollowUpInterceptor);
interceptors.add(new BridgeInterceptor(client.cookieJar()));
interceptors.add(new CacheInterceptor(client.internalCache()));
interceptors.add(new ConnectInterceptor(client));
if (!forWebSocket) {
interceptors.addAll(client.networkInterceptors());
}
interceptors.add(new CallServerInterceptor(forWebSocket));
Interceptor.Chain chain = new RealInterceptorChain(
interceptors, null, null, null, 0, originalRequest);
return chain.proceed(originalRequest);
}
这里面看到 ,第一个add的是client里面自己定义的拦截链集合和如果不是webSocket的话能添加客户端网络的拦截链,然后后面依次添加的拦截器有
RetryAndFollowUpInterceptor 重试和跟进拦截器
BridgeInterceptor 桥拦截器
CacheInterceptor 缓存拦截器
ConnectInterceptor 链接拦截器
CallServerInterceptor 呼叫服务拦截器
RealInterceptorChain 实际拦截链,其中携带整个拦截器链:所有应用拦截器,OkHttp核心,所有网络拦截器,最后是网络呼叫者。
这种链式调用在设计模式里有个叫责任链模式,这个的话我们进去看下源码印证一下,因为他这个集合是一个带有泛型的,所以直接看他的泛型
/**
* Observes, modifies, and potentially short-circuits requests going out and the corresponding
* responses coming back in. Typically interceptors add, remove, or transform headers on the request
* or response.
* 观察,修改和潜在地短路请求以及相应的响应。通常,拦截器会在请求或响应中添加,删除或变换头文件。
*/
public interface Interceptor {
Response intercept(Chain chain) throws IOException;
interface Chain {
Request request();
Response proceed(Request request) throws IOException;
Connection connection();
}
}
然后再看RealInterceptorChain的代码因为后面调用的是他的proceed方法,可以知道他肯定是实现了Interceptor的Chain,我们先来看他的初始化的过程
Interceptor.Chain chain = new RealInterceptorChain(interceptors, null, null, null, 0, originalRequest);
直接看他的构造函数
public RealInterceptorChain(List<Interceptor> interceptors, StreamAllocation streamAllocation,
HttpCodec httpCodec, RealConnection connection, int index, Request request) {
this.interceptors = interceptors;
this.connection = connection;
this.streamAllocation = streamAllocation;
this.httpCodec = httpCodec;
this.index = index;
this.request = request;
}
为null的先不管,看那些不为null的, 传过来了一个请求链,index是0,还有request 接着调用了RealInterceptorChain的proceed方法
@Override public Response proceed(Request request) throws IOException {
return proceed(request, streamAllocation, httpCodec, connection);
}
public Response proceed(Request request, StreamAllocation streamAllocation, HttpCodec httpCodec,
RealConnection connection) throws IOException {
if (index >= interceptors.size()) throw new AssertionError();
calls++;
// If we already have a stream, confirm that the incoming request will use it.
//如果我们已经有一个流,请确认传入的请求将使用它
if (this.httpCodec != null && !this.connection.supportsUrl(request.url())) {
throw new IllegalStateException("network interceptor " + interceptors.get(index - 1)
+ " must retain the same host and port");
}
// If we already have a stream, confirm that this is the only call to chain.proceed().
//如果我们已经有一个流,确认这是唯一的call在chain.proceed()中
if (this.httpCodec != null && calls > 1) {
throw new IllegalStateException("network interceptor " + interceptors.get(index - 1)
+ " must call proceed() exactly once");
}
// Call the next interceptor in the chain.
// 调用链中的下一个拦截器
RealInterceptorChain next = new RealInterceptorChain(
interceptors, streamAllocation, httpCodec, connection, index + 1, request);
Interceptor interceptor = interceptors.get(index);
Response response = interceptor.intercept(next);
// Confirm that the next interceptor made its required call to chain.proceed().
// 确认下一个拦截器将其所需的调用链接到chain.proceed()
if (httpCodec != null && index + 1 < interceptors.size() && next.calls != 1) {
throw new IllegalStateException("network interceptor " + interceptor
+ " must call proceed() exactly once");
}
// Confirm that the intercepted response isn't null.
if (response == null) {
throw new NullPointerException("interceptor " + interceptor + " returned null");
}
return response;
}
这里面可以看到最后调用的是proceed(Request request, StreamAllocation streamAllocation, HttpCodec httpCodec,RealConnection connection)
首先是几个判断,流程如下
- httpCodec不为空并且connection的url不支持这个请求的Url,那么抛出异常
- httpCodec不为空且当前的请求数大于1,抛出异常
- 开吃调用拦截链的逻辑
- httpCodec不为空并且当前索引加1小于请求链的长度,下一个请求的call不为1 ,抛出异常。
- response为空,抛出异常
- return response
这块逻辑 会不停的去调用下一个
// Call the next interceptor in the chain.
// 调用链中的下一个拦截器
RealInterceptorChain next = new RealInterceptorChain(
interceptors, streamAllocation, httpCodec, connection, index + 1, request);
Interceptor interceptor = interceptors.get(index);
Response response = interceptor.intercept(next);
第一次运行到这里的时候,调用的是RetryAndFollowUpInterceptor这个拦截器的intercept方法
RetryAndFollowUpInterceptor 重试和跟进拦截器
之前有简单介绍过这个拦截器,所以我们直接看他的intercept方法
@Override public Response intercept(Chain chain) throws IOException {
Request request = chain.request();
streamAllocation = new StreamAllocation(
client.connectionPool(), createAddress(request.url()), callStackTrace);
int followUpCount = 0;
Response priorResponse = null;
while (true) {
if (canceled) {
streamAllocation.release();
throw new IOException("Canceled");
}
Response response = null;
boolean releaseConnection = true;
try {
response = ((RealInterceptorChain) chain).proceed(request, streamAllocation, null, null);
releaseConnection = false;
} catch (RouteException e) {
// The attempt to connect via a route failed. The request will not have been sent.
if (!recover(e.getLastConnectException(), false, request)) {
throw e.getLastConnectException();
}
releaseConnection = false;
continue;
} catch (IOException e) {
// An attempt to communicate with a server failed. The request may have been sent.
boolean requestSendStarted = !(e instanceof ConnectionShutdownException);
if (!recover(e, requestSendStarted, request)) throw e;
releaseConnection = false;
continue;
} finally {
// We're throwing an unchecked exception. Release any resources.
if (releaseConnection) {
streamAllocation.streamFailed(null);
streamAllocation.release();
}
}
// Attach the prior response if it exists. Such responses never have a body.
if (priorResponse != null) {
response = response.newBuilder()
.priorResponse(priorResponse.newBuilder()
.body(null)
.build())
.build();
}
Request followUp = followUpRequest(response);
if (followUp == null) {
if (!forWebSocket) {
streamAllocation.release();
}
return response;
}
closeQuietly(response.body());
if (++followUpCount > MAX_FOLLOW_UPS) {
streamAllocation.release();
throw new ProtocolException("Too many follow-up requests: " + followUpCount);
}
if (followUp.body() instanceof UnrepeatableRequestBody) {
streamAllocation.release();
throw new HttpRetryException("Cannot retry streamed HTTP body", response.code());
}
if (!sameConnection(response, followUp.url())) {
streamAllocation.release();
streamAllocation = new StreamAllocation(
client.connectionPool(), createAddress(followUp.url()), callStackTrace);
} else if (streamAllocation.codec() != null) {
throw new IllegalStateException("Closing the body of " + response
+ " didn't close its backing stream. Bad interceptor?");
}
request = followUp;
priorResponse = response;
}
}
这边的流程屡一下
- 获取request
- new 一个StreamAllocation
- 然后再去调用当前传过来的chain的proceed方法
- 然后返回response
- 组装response和一些善后处理
敏锐的我们看到了streamAllocation 按照字面的意思是 流分配 传入的值是连接池,url,和一个callStackTrace
SteamAllocation上面的描述我们看下,直接中文版翻译过来:
* 该类协调三个实体之间的关系
*
* Connections: 到远程服务器的物理套接字连接。 这些建立可能很慢,所以有必要能够取消当前连接的连接。
* Streams: 在连接上分层的逻辑HTTP请求/响应对。 每个连接都有自己的分配限制,它定义了连接可以携带多少个并发流。
* HTTP / 1.x连接一次可以携带1个流,HTTP / 2通常携带多个。
* Calls: 流的逻辑顺序,通常是初始请求及其后续请求。 我们更喜欢将单个Call的所有流保留在同一个连接上,以获得更好的行为和位置。
*
* 该类的实例代表呼叫,在一个或多个连接上使用一个或多个流。 该类有API可以释放以上每种资源:
* {@link #noNewStreams()} 将阻止连接被用于新的流。在{@code Connection: close}header之后或当连接可能不一致时使用此选项。
* {@link #streamFinished streamFinished()}从此分配中释放活动流。
* 请注意,在给定时间只有一个流可能处于活动状态,因此在使用{@link #newStream newStream()}
* 创建后续流之前,有必要调用{@link #streamFinished streamFinished()}。
* {@link #release()}删除连接上的呼叫保持。 请注意,这不会立即释放连接,如果有一个流仍然挥之不去。
* 这种情况发生在通话完成但其响应体尚未完全消耗的情况下。
*
* 此类支持{@linkplain # asynchronous canceling}。
* 这是为了具有最小的爆炸半径。
* 如果HTTP / 2流处于活动状态,则取消将取消该流,但不会将其他流分享其连接。
* 但是如果TLS握手仍在进行中,则取消可能会破坏整个连接。
这个我们大致就知道了这个类是来干嘛的了,在RetryAndFollowUpInterceptor里面他只进行了 realease和streamFailed操作 ,推测他的调用应该在下一个拦截链里面,我们根据上面的拦截器集合知道 下一个调用的是BridgeInterceptor拦截器
BridgeInterceptor
这个拦截器主要的职责是
从应用程序代码到网络代码的桥梁。 首先,它根据用户请求构建网络请求。 然后它继续呼叫网络。 最后,它从网络响应中构建用户响应。 主要构件的是网络请求的header的部分和组装返回来的body
(昨天睡的晚,今天好困啊。。。。)
这个类不大,直接放上来讲
public final class BridgeInterceptor implements Interceptor {
private final CookieJar cookieJar;
//放进去构建的时候的CookieJar
public BridgeInterceptor(CookieJar cookieJar) {
this.cookieJar = cookieJar;
}
@Override public Response intercept(Chain chain) throws IOException {
//老套路,拿到chain的request
Request userRequest = chain.request();
//利用request的Builder新建一个request
Request.Builder requestBuilder = userRequest.newBuilder();
//初始化requestBody
RequestBody body = userRequest.body();
//获取contentType 因为是在TestMain里面设置的body,用的FormBody,他的CONTENT_TYPE是 MediaType.parse("application/x-www-form-urlencoded");
if (body != null) {
MediaType contentType = body.contentType();
if (contentType != null) {
requestBuilder.header("Content-Type", contentType.toString());
}
//设置Content-Length
long contentLength = body.contentLength();
if (contentLength != -1) {
requestBuilder.header("Content-Length", Long.toString(contentLength));
requestBuilder.removeHeader("Transfer-Encoding");
} else {
requestBuilder.header("Transfer-Encoding", "chunked");
requestBuilder.removeHeader("Content-Length");
}
}
//设置Host
if (userRequest.header("Host") == null) {
requestBuilder.header("Host", hostHeader(userRequest.url(), false));
}
if (userRequest.header("Connection") == null) {
requestBuilder.header("Connection", "Keep-Alive");
}
// If we add an "Accept-Encoding: gzip" header field we're responsible for also decompressing
// the transfer stream.
// 如果我们添加了一个“Accept-Encoding:gzip”头域,我们也负责解压缩传输流。
boolean transparentGzip = false;
if (userRequest.header("Accept-Encoding") == null && userRequest.header("Range") == null) {
transparentGzip = true;
requestBuilder.header("Accept-Encoding", "gzip");
}
//头部加入cookie
List<Cookie> cookies = cookieJar.loadForRequest(userRequest.url());
if (!cookies.isEmpty()) {
requestBuilder.header("Cookie", cookieHeader(cookies));
}
//头部加入UA头
if (userRequest.header("User-Agent") == null) {
requestBuilder.header("User-Agent", Version.userAgent());
}
/**
*----------------------------------------------调用下一个链条的proceed方法 责任链模式---------------------------------
**/
Response networkResponse = chain.proceed(requestBuilder.build());
//后面的是请求回来的
//保存cookiejar
HttpHeaders.receiveHeaders(cookieJar, userRequest.url(), networkResponse.headers());
//构建response
Response.Builder responseBuilder = networkResponse.newBuilder()
.request(userRequest);
//处理gzip和encode
if (transparentGzip
&& "gzip".equalsIgnoreCase(networkResponse.header("Content-Encoding"))
&& HttpHeaders.hasBody(networkResponse)) {
GzipSource responseBody = new GzipSource(networkResponse.body().source());
Headers strippedHeaders = networkResponse.headers().newBuilder()
.removeAll("Content-Encoding")
.removeAll("Content-Length")
.build();
responseBuilder.headers(strippedHeaders);
responseBuilder.body(new RealResponseBody(strippedHeaders, Okio.buffer(responseBody)));
}
//返回response
return responseBuilder.build();
}
/** Returns a 'Cookie' HTTP request header with all cookies, like {@code a=b; c=d}. */
private String cookieHeader(List<Cookie> cookies) {
StringBuilder cookieHeader = new StringBuilder();
for (int i = 0, size = cookies.size(); i < size; i++) {
if (i > 0) {
cookieHeader.append("; ");
}
Cookie cookie = cookies.get(i);
cookieHeader.append(cookie.name()).append('=').append(cookie.value());
}
return cookieHeader.toString();
}
}
这里截止到调用下个拦截链的时候,做了以下几件事情:
-
构建请求体
-
设置content-type和content-length
-
设置Host
-
设置Connection
-
处理gzip
-
设置cookie
-
设置User-Agent
-
调用下一个拦截链
按照上面的顺序,下一个拦截链是CacheInterceptor,CacheInterceptor是个比较复杂的拦截链,如果我们没设置的话里面的判断都是不进去的,然后调用下一个chain,下一个是ConnectInterceptor
ConnectInterceptor
这个拦截器做的事情看起来简单,实际上是比较复杂的,他的主要职责是:
打开与目标服务器的连接,并进入下一个拦截器
代码量很少
public final class ConnectInterceptor implements Interceptor {
public final OkHttpClient client;
public ConnectInterceptor(OkHttpClient client) {
this.client = client;
}
@Override public Response intercept(Chain chain) throws IOException {
RealInterceptorChain realChain = (RealInterceptorChain) chain;
Request request = realChain.request();
StreamAllocation streamAllocation = realChain.streamAllocation();
// We need the network to satisfy this request. Possibly for validating a conditional GET.
//如果是get请求 不做健康检查
boolean doExtensiveHealthChecks = !request.method().equals("GET");
HttpCodec httpCodec = streamAllocation.newStream(client, doExtensiveHealthChecks);
RealConnection connection = streamAllocation.connection();
return realChain.proceed(request, streamAllocation, httpCodec, connection);
}
}
这里重要的就是streamAllocation这个类,这边调用了他的newStream()方法和connection()方法 ,我们点进去分析这两个方法
//在retryAndFollowUp里面已经初始化过 我们这边就直接看他的方法里面
public HttpCodec newStream(OkHttpClient client, boolean doExtensiveHealthChecks) {
int connectTimeout = client.connectTimeoutMillis();
int readTimeout = client.readTimeoutMillis();
int writeTimeout = client.writeTimeoutMillis();
boolean connectionRetryEnabled = client.retryOnConnectionFailure();
//从连接池里寻找一个健康的connection
try {
RealConnection resultConnection = findHealthyConnection(connectTimeout, readTimeout,
writeTimeout, connectionRetryEnabled, doExtensiveHealthChecks);
HttpCodec resultCodec = resultConnection.newCodec(client, this);
synchronized (connectionPool) {
codec = resultCodec;
return resultCodec;
}
} catch (IOException e) {
throw new RouteException(e);
}
}
这里先初始化了几个时间 ,然后去find了一个健康的connection 返回RealConnection
我们看这个小蝌蚪找妈妈的方法
/**
* Finds a connection and returns it if it is healthy. If it is unhealthy the process is repeated until a healthy connection is found.
*
* 找到一个健康的连接并返回它。 如果不健康,则重复该过程直到发现健康的连接。
*/
private RealConnection findHealthyConnection(int connectTimeout, int readTimeout,
int writeTimeout, boolean connectionRetryEnabled, boolean doExtensiveHealthChecks)
throws IOException {
while (true) {
RealConnection candidate = findConnection(connectTimeout, readTimeout, writeTimeout,
connectionRetryEnabled);
// If this is a brand new connection, we can skip the extensive health checks.
//如果这是一个全新的联系,我们可以跳过广泛的健康检查。
synchronized (connectionPool) {
if (candidate.successCount == 0) {
return candidate;
}
}
// Do a (potentially slow) check to confirm that the pooled connection is still good. If it
// isn't, take it out of the pool and start again.
//做一个(潜在的慢)检查,以确认汇集的连接是否仍然良好。 如果不是,请将其从池中取出并重新开始。
if (!candidate.isHealthy(doExtensiveHealthChecks)) {
noNewStreams();
continue;
}
return candidate;
}
}
这个方法的参数有必要说明一下
doExtensiveHealthChecks = true //是否做健康检查 get的话不做
connectTimeout = 10000 //链接超时时间
readTimeout = 10000 //读取超时时间
writeTimeout = 10000 //写入超时时间
connectionRetryEnabled = true //连接重试启用
这个方法首先就是进入了一个while循环,里面又调用了一个findConnection的方法去寻找RealConnection,又转到findConnection,这个方法比较长,慢慢来看
/**
* Returns a connection to host a new stream. This prefers the existing connection if it exists,
* then the pool, finally building a new connection.
*
* 返回一个连接以托管新流。最好是现有的连接,如果它存在,然后是池,最后建立一个新的连接。
*/
private RealConnection findConnection(int connectTimeout, int readTimeout, int writeTimeout,
boolean connectionRetryEnabled) throws IOException {
Route selectedRoute;
//二话不说先上锁,避免线程问题
synchronized (connectionPool) {
// 确保状态的正常
if (released) throw new IllegalStateException("released");
if (codec != null) throw new IllegalStateException("codec != null");
if (canceled) throw new IOException("Canceled");
// Attempt to use an already-allocated connection.
// 尝试使用已分配的连接。如果之前没有请求的话就是null,如果有的话就用 没有的话往下走
RealConnection allocatedConnection = this.connection;
if (allocatedConnection != null && !allocatedConnection.noNewStreams) {
return allocatedConnection;
}
// Attempt to get a connection from the pool.
// 尝试从池中获取连接。
Internal.instance.get(connectionPool, address, this, null);
if (connection != null) {
return connection;
}
selectedRoute = route;
}
// If we need a route, make one. This is a blocking operation.
//如果我们需要一条路线,做一个路线。这是一个阻止操作。
if (selectedRoute == null) {
selectedRoute = routeSelector.next();
}
//真正的请求
RealConnection result;
synchronized (connectionPool) {
if (canceled) throw new IOException("Canceled");
// Now that we have an IP address, make another attempt at getting a connection from the pool.
// This could match due to connection coalescing.
//现在我们有一个IP地址,再尝试从池中获取连接。
//这可能由于连接聚结而匹配。
Internal.instance.get(connectionPool, address, this, selectedRoute);
if (connection != null) return connection;
// Create a connection and assign it to this allocation immediately. This makes it possible
// for an asynchronous cancel() to interrupt the handshake we're about to do.
//
//创建连接并立即将其分配给此分配。这使得异步cancel()可以中断我们即将做的握手。
//
route = selectedRoute;
refusedStreamCount = 0;
//到这里发现没有,新建一个RealConnection
result = new RealConnection(connectionPool, selectedRoute);
//添加计数
acquire(result);
}
// Do TCP + TLS handshakes. This is a blocking operation.
//做TCP + TLS握手。 这是一个阻止操作。这一步进行的是sokcet的初始化和链接
result.connect(connectTimeout, readTimeout, writeTimeout, connectionRetryEnabled);
//假如这个请求之前有失败过 ,从失败队列里移除
routeDatabase().connected(result.route());
Socket socket = null;
synchronized (connectionPool) {
// Pool the connection.
// 加入连接池。
Internal.instance.put(connectionPool, result);
// If another multiplexed connection to the same address was created concurrently, then
// release this connection and acquire that one.
// 如果同时创建了与同一地址的多路复用连接,则释放此连接并获取该连接。
if (result.isMultiplexed()) {
socket = Internal.instance.deduplicate(connectionPool, address, this);
result = connection;
}
}
closeQuietly(socket);
return result;
}
这边寻找到一个连接后,讲这个链接赋值个一个RealConnection,然后去调用下一个链条的proceed方法,就是上面的
return realChain.proceed(request, streamAllocation, httpCodec, connection);
根据上面的集合 下一个链条是CallServerInterceptor,我们来进入CallServerInterceptor
CallServerInterceptor
这是链中的最后一个拦截器。 它对服务器进行网络呼叫
是不是感觉不想看了?头晕眼皮重想睡觉?
**稳住 我们能赢!! **
public final class CallServerInterceptor implements Interceptor {
private final boolean forWebSocket;
//RealCall 初始化 是否是webSocket
public CallServerInterceptor(boolean forWebSocket) {
this.forWebSocket = forWebSocket;
}
@Override public Response intercept(Chain chain) throws IOException {
//同样的配方 同样的味道
RealInterceptorChain realChain = (RealInterceptorChain) chain;
//在上个链条里初始化的HttpCodec 一般ed是HttpCodec1
HttpCodec httpCodec = realChain.httpStream();
//从上一个里面获取streamAllocation
StreamAllocation streamAllocation = realChain.streamAllocation();
//获取当前链接
RealConnection connection = (RealConnection) realChain.connection();
//获取请求
Request request = realChain.request();
long sentRequestMillis = System.currentTimeMillis();
///这应该更新HTTP引擎的sentRequestMillis字段
httpCodec.writeRequestHeaders(request);
Response.Builder responseBuilder = null;
if (HttpMethod.permitsRequestBody(request.method()) && request.body() != null) {
// If there's a "Expect: 100-continue" header on the request, wait for a "HTTP/1.1 100
// Continue" response before transmitting the request body. If we don't get that, return what
// we did get (such as a 4xx response) without ever transmitting the request body.
//如果请求中有一个“Expect:100-continue”头,请等待“HTTP / 1.1 100 Continue”响应,
// 然后再发送请求主体。如果我们没有这样做,
// 请返回我们所获得的(例如4xx响应),而不会传输请求体。
if ("100-continue".equalsIgnoreCase(request.header("Expect"))) {
httpCodec.flushRequest();
responseBuilder = httpCodec.readResponseHeaders(true);
}
if (responseBuilder == null) {
// Write the request body if the "Expect: 100-continue" expectation was met.
//如果满足“Expect:100-continue”期望,请写请求正文
Sink requestBodyOut = httpCodec.createRequestBody(request, request.body().contentLength());
BufferedSink bufferedRequestBody = Okio.buffer(requestBodyOut);
request.body().writeTo(bufferedRequestBody);
bufferedRequestBody.close();
} else if (!connection.isMultiplexed()) {
// If the "Expect: 100-continue" expectation wasn't met, prevent the HTTP/1 connection from
// being reused. Otherwise we're still obligated to transmit the request body to leave the
// connection in a consistent state.
streamAllocation.noNewStreams();
}
}
httpCodec.finishRequest();
if (responseBuilder == null) {
responseBuilder = httpCodec.readResponseHeaders(false);
}
Response response = responseBuilder
.request(request)
.handshake(streamAllocation.connection().handshake())
.sentRequestAtMillis(sentRequestMillis)
.receivedResponseAtMillis(System.currentTimeMillis())
.build();
int code = response.code();
if (forWebSocket && code == 101) {
// Connection is upgrading, but we need to ensure interceptors see a non-null response body.
//连接正在升级,但是我们需要确保拦截器看到一个非空响应体
response = response.newBuilder()
.body(Util.EMPTY_RESPONSE)
.build();
} else {
response = response.newBuilder()
.body(httpCodec.openResponseBody(response))
.build();
}
if ("close".equalsIgnoreCase(response.request().header("Connection"))
|| "close".equalsIgnoreCase(response.header("Connection"))) {
streamAllocation.noNewStreams();
}
if ((code == 204 || code == 205) && response.body().contentLength() > 0) {
throw new ProtocolException(
"HTTP " + code + " had non-zero Content-Length: " + response.body().contentLength());
}
return response;
}
}
上面获取到一系列的变量之后,然后调用了
httpCodec.writeRequestHeaders(request);
这个方法里面是这样的
/** Returns bytes of a request header for sending on an HTTP transport. */
/** 返回用于在HTTP传输上发送的请求标头的字节*/
public void writeRequest(Headers headers, String requestLine) throws IOException {
if (state != STATE_IDLE) throw new IllegalStateException("state: " + state);
sink.writeUtf8(requestLine).writeUtf8("\r\n");
for (int i = 0, size = headers.size(); i < size; i++) {
sink.writeUtf8(headers.name(i))
.writeUtf8(": ")
.writeUtf8(headers.value(i))
.writeUtf8("\r\n");
}
sink.writeUtf8("\r\n");
state = STATE_OPEN_REQUEST_BODY;
}
这个就是组装了一个头然后请求过去,然后接着判断当前请求的方法和body是否合法,然后往下走,判断一下如果请求中有一个“Expect:100-continue”头,等待“HTTP / 1.1 100 Continue”响应, 平常也没有 ,然后往下走,判断responseBuilder 如果为空的话,调用httpCodec的createRequestBody,它里面的经过重重调用之后,最后是调用的这个方法
private long writeOrCountBytes(BufferedSink sink, boolean countBytes) {
long byteCount = 0L;
Buffer buffer;
if (countBytes) {
buffer = new Buffer();
} else {
buffer = sink.buffer();
}
for (int i = 0, size = encodedNames.size(); i < size; i++) {
if (i > 0) buffer.writeByte('&');
buffer.writeUtf8(encodedNames.get(i));
buffer.writeByte('=');
buffer.writeUtf8(encodedValues.get(i));
}
if (countBytes) {
byteCount = buffer.size();
buffer.clear();
}
return byteCount;
}
从CallServerInterceptor 调用过来的这个方法的countBytes是false, 用的是sink的buff 这个sink的buff现在就是socket的流操作 ,把请求提写入到socket里面,完成请求,具体的整个sokcet请求的流程我会在教程里讲,这里就不多叙述。
接着上面的说,请求完之后 responseBuilder 是通过httpcodec的readResponseHeaders来创建,里面有请求回来的请求码, 状态和头部,然后根据responseBuilder构架response,把当前的请求,握手,发送请求的时间,服务器返回的时间放到response里面,此处忽略101先,然后看到response又通过builder去放入返回的body,如果是20X的话就抛出异常,然后返回response。 此处又该往回走,在RealInterceptorChain 里面后半部分,处理了一下结尾,然后返回Response,然后RealCall里面的getResponseWithInterceptorChain()返回Response,然后在execute或者AsyncCall的execute里面返回Response,如果是AsuncCall的话返回到回调里,这个流程就完成了。