堆队列heapq类型

Python中的heapq模块提供了一种堆队列heapq类型,这样实现堆排序等算法便相当方便,

这里我们就来详解Python中heapq模块的用法,需要的朋友可以参考下

heapq 模块提供了堆算法。heapq是一种子节点和父节点排序的树形数据结构。

这个模块提供heap[k] <= heap[2k+1] and heap[k] <= heap[2k+2]。

为了比较不存在的元素被人为是无限大的。heap最小的元素总是[0]。

打印 heapq 类型

import math
import random
from cStringIO import StringIO

def show_tree(tree, total_width=36, fill=' '):
   output = StringIO()
   last_row = -1
   for i, n in enumerate(tree):
     if i:
       row = int(math.floor(math.log(i+1, 2)))
     else:
       row = 0
     if row != last_row:
       output.write('\n')
     columns = 2**row
     col_width = int(math.floor((total_width * 1.0) / columns))
     output.write(str(n).center(col_width, fill))
     last_row = row
   print output.getvalue()
   print '-' * total_width
   print
   return

data = random.sample(range(1,8), 7)
print 'data: ', data
show_tree(data)

打印结果

data: [3, 2, 6, 5, 4, 7, 1]

     3
  2      6
5    4  7     1
-------------------------

heapq.heappush(heap, item)

push一个元素到heap里, 修改上面的代码

heap = []
data = random.sample(range(1,8), 7)
print 'data: ', data

for i in data:
  print 'add %3d:' % i
  heapq.heappush(heap, i)
  show_tree(heap)

打印结果

data: [6, 1, 5, 4, 3, 7, 2]
add  6:
         6
 ------------------------------------
add  1:
      1
   6
------------------------------------
add  5:
      1
   6       5
------------------------------------
add  4:
        1
    4       5
  6
------------------------------------
add  3:
        1
    3       5
  6    4
------------------------------------
add  7:
        1
    3        5
  6    4    7
------------------------------------
add  2:
        1
    3        2
  6    4    7    5
------------------------------------

根据结果可以了解,子节点的元素大于父节点元素。而兄弟节点则不会排序。

heapq.heapify(list)

将list类型转化为heap, 在线性时间内, 重新排列列表。

print 'data: ', data
heapq.heapify(data)
print 'data: ', data

show_tree(data)

打印结果

data: [2, 7, 4, 3, 6, 5, 1]
data: [1, 3, 2, 7, 6, 5, 4]

      1
   3         2
7    6    5    4
------------------------------------

heapq.heappop(heap)

删除并返回堆中最小的元素, 通过heapify() 和heappop()来排序。

data = random.sample(range(1, 8), 7)
print 'data: ', data
heapq.heapify(data)
show_tree(data)

heap = []
while data:
  i = heapq.heappop(data)
  print 'pop %3d:' % i
  show_tree(data)
  heap.append(i)
print 'heap: ', heap

打印结果

data: [4, 1, 3, 7, 5, 6, 2]

         1
    4         2
  7    5    6    3
------------------------------------

pop  1:
         2
    4         3
  7    5    6
------------------------------------
pop  2:
         3
    4         6
  7    5
------------------------------------
pop  3:
         4
    5         6
  7
------------------------------------
pop  4:
         5
    7         6
------------------------------------
pop  5:
         6
    7
------------------------------------
pop  6:
        7
------------------------------------
pop  7:

------------------------------------
heap: [1, 2, 3, 4, 5, 6, 7]

可以看到已排好序的heap。

heapq.heapreplace(iterable, n)

删除现有元素并将其替换为一个新值。

data = random.sample(range(1, 8), 7)
print 'data: ', data
heapq.heapify(data)
show_tree(data)

for n in [8, 9, 10]:
  smallest = heapq.heapreplace(data, n)
  print 'replace %2d with %2d:' % (smallest, n)
  show_tree(data)

打印结果

data: [7, 5, 4, 2, 6, 3, 1]

         1
    2         3
  5    6    7    4
------------------------------------

replace 1 with 8:

         2
    5         3
  8    6    7    4
------------------------------------

replace 2 with 9:

         3
    5         4
  8    6    7    9
------------------------------------

replace 3 with 10:

         4
    5         7
  8    6    10    9
------------------------------------

heapq.nlargest(n, iterable) 和 heapq.nsmallest(n, iterable)

返回列表中的n个最大值和最小值

data = range(1,6)
l = heapq.nlargest(3, data)
print l     # [5, 4, 3]

s = heapq.nsmallest(3, data)
print s     # [1, 2, 3]

PS:一个计算题

构建元素个数为 K=5 的最小堆代码实例:

#!/usr/bin/env python
# -*- encoding: utf-8 -*-
# Author: kentzhan
#

import heapq
import random

heap = []
heapq.heapify(heap)
for i in range(15):
 item = random.randint(10, 100)
 print "comeing ", item,
 if len(heap) >= 5:
  top_item = heap[0] # smallest in heap
  if top_item < item: # min heap
   top_item = heapq.heappop(heap)
   print "pop", top_item,
   heapq.heappush(heap, item)
   print "push", item,
 else:
  heapq.heappush(heap, item)
  print "push", item,
 pass
 print heap
pass
print heap

print "sort"
heap.sort()

print heap

例:

import heapq
# 接受 list tuple  中包含的int和str型dict
# 也接受中文,不过不清楚是怎么对比的
nums = [1,2,3,213,23123,213,21,33,434,53,342,344,-324]
# nums = ['2017-12-22', '2014-12-22', '2016-03-22', '2015-04-22', '2017-04-25', '2017-05-22',]
# nums = ['p9','s8','a0','9z','0z']
# nums = ['我','人','有','的','这']
# print(heapq.nlargest(2,nums))  # 返回 nums 中包含2个最大的元素的列表
# print(heapq.nsmallest(3,nums))  # 返回 nums 中包含3个最小的元素的列表

#结果
# [23123, 434]
# [-324, 1, 2]

# ['2017-12-22', '2017-05-22']
# ['2014-12-22', '2015-04-22', '2016-03-22']

# ['s8', 'p9']
# ['0z', '9z', 'a0']

# ['这', '的']
# ['人', '我', '有']

info = [
    {'name':'a0','time':'2014-09-23','price':231.2},
    {'name':'0b','time':'2017-03-23','price':231.2},
    {'name':'z1','time':'2019-09-23','price':231.2},
    {'name':'2z','time':'2010-09-23','price':231.2},
    {'name':'2a','time':'2017-12-23','price':231.2}
]
l_names = heapq.nsmallest(2,info,key=lambda di:di['name'])
l_times = heapq.nsmallest(2,info,key=lambda di:di['time'])
l_prices = heapq.nsmallest(2,info,key=lambda di:di['price'])
b_names = heapq.nlargest(2, info, key=lambda di: di['name'])
b_times = heapq.nlargest(2, info, key=lambda di: di['time'])
b_prices = heapq.nlargest(2, info, key=lambda di: di['price'])

# print(l_names, b_names,l_times, b_times,l_prices,b_prices,sep='\n')

# [{'price': 231.2, 'name': '0b', 'time': '2017-03-23'}, {'price': 231.2, 'name': '2a', 'time': '2017-12-23'}]
# [{'price': 231.2, 'name': 'z1', 'time': '2019-09-23'}, {'price': 231.2, 'name': 'a0', 'time': '2014-09-23'}]
# [{'price': 231.2, 'name': '2z', 'time': '2010-09-23'}, {'price': 231.2, 'name': 'a0', 'time': '2014-09-23'}]
# [{'price': 231.2, 'name': 'z1', 'time': '2019-09-23'}, {'price': 231.2, 'name': '2a', 'time': '2017-12-23'}]
# [{'price': 231.2, 'name': 'a0', 'time': '2014-09-23'}, {'price': 231.2, 'name': '0b', 'time': '2017-03-23'}]
# [{'price': 231.2, 'name': 'a0', 'time': '2014-09-23'}, {'price': 231.2, 'name': '0b', 'time': '2017-03-23'}]

# 堆数据结构
heapq.heapify(nums)

for i in range(len(nums)):
    print(heapq.heappop(nums))  #取出最小的元素

'''
-324
1
2
3
21
33
53
213
213
342
344
434
23123
'''

实现一个优先级队列

import heapq

class PriorityQueue:
    ""
    def __init__(self):
        ""
        self._queue = []
        self._index = 0

    def push(self,item,priority):
        print(item,-priority)
        print('+'*20)
        heapq.heappush(self._queue,(-priority,self._index,item))
        self._index +=1
        print(self._queue,self._index)

    def pop(self):
        print(self._queue)
        return heapq.heappop(self._queue)[-1]

class Item:
    def __init__(self,name):
        self.name = name

    def __repr__(self):
        # print(r'Item({!r})'.format(self.name))
        return 'Item({!r})'.format(self.name)

q = PriorityQueue()
q.push(Item('foo'),1)
q.push(Item('bar'),5)
q.push(Item('spam'),4)
q.push(Item('grok'),100)
print('_'*20)
print(q.pop())
print(q.pop())
print(q.pop())
print(q.pop())

# Item('foo') - 1
# ++++++++++++++++++++
# [(-1, 0, Item('foo'))]
# 1
# Item('bar') - 5
# ++++++++++++++++++++
# [(-5, 1, Item('bar')), (-1, 0, Item('foo'))]
# 2
# Item('spam') - 4
# ++++++++++++++++++++
# [(-5, 1, Item('bar')), (-1, 0, Item('foo')), (-4, 2, Item('spam'))]
# 3
# Item('grok') - 100
# ++++++++++++++++++++
# [(-100, 3, Item('grok')), (-5, 1, Item('bar')), (-4, 2, Item('spam')), (-1, 0, Item('foo'))]
# 4
# ____________________
# [(-100, 3, Item('grok')), (-5, 1, Item('bar')), (-4, 2, Item('spam')), (-1, 0, Item('foo'))]
# Item('grok')
# [(-5, 1, Item('bar')), (-1, 0, Item('foo')), (-4, 2, Item('spam'))]
# Item('bar')
# [(-4, 2, Item('spam')), (-1, 0, Item('foo'))]
# Item('spam')
# [(-1, 0, Item('foo'))]
# Item('foo')

FROM: http://www.jb51.net/article/87552.htm

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,126评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,254评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,445评论 0 341
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,185评论 1 278
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,178评论 5 371
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,970评论 1 284
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,276评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,927评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,400评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,883评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,997评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,646评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,213评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,204评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,423评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,423评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,722评论 2 345

推荐阅读更多精彩内容

  • Heap in python Heap,即堆,也就是优先队列。我们可以在这里找到[]维基百科](https://e...
    英武阅读 2,737评论 0 51
  • 概述 排序有内部排序和外部排序,内部排序是数据记录在内存中进行排序,而外部排序是因排序的数据很大,一次不能容纳全部...
    蚁前阅读 5,164评论 0 52
  • 1.插入排序—直接插入排序(Straight Insertion Sort) 基本思想: 将一个记录插入到已排序好...
    依依玖玥阅读 1,239评论 0 2
  • 抑郁了很久,不知道因何而起,或许是因为憋得很久。 从小就知道,我爸并不爱我妈,也知道家里并不是他们口中的那般和谐,...
    大H家的小h阅读 818评论 2 4
  • 你在时,我去哪都带着你上班,一起去公司下班,一起回租房去玩,一起出门,一起看风景你不是一把伞你是有灵魂的精神物件 ...
    凌兮儿_阅读 352评论 12 8