动态规划之斜率优化

斜率优化概念

在动态规划中,某些递推方程可以转化成 DP[i] = f[j] + x[i] 的形式,其中 f[j] 只保存与 j 相关的量。这类方程有两类优化方式:

  1. 单调队列优化
    局限性:f[j] 必须只能和 j 有关,且其递推方程可以分解成上述形式,否则该优化方案不合适。
  2. 斜率优化
    可以较好的解决单调队列的局限性。

斜率优化应用实战

题目:打印数字

给定一串数字(含有N个元素), 连续输出其中的一个子串,所花费用是“子串数字和的平方 加 上一个常数M”。求解:输出这一串数字的最小花费。
题目来源自HDU

题解

假设下标 i 从 1 开始;
dp[i] : 表示输出到 第 i 个数字时的最少花费;
sum[i] : 表示从a[1] 到 a[i] 的数字和;
递推方程: dp[i] = dp[j] + M + (sum[i] - sum[j])2

从该递推公式可以看出,我们需要二层循环,当输入的数字串非常大时,显然非常耗时。时间复杂度O(N2)

斜率优化

步骤1:问题是否具有决策单调性

步骤2:斜率优化
假设k<j<i, i 是当前的位置, 由题意知,如果选择 j 优于 选择 k,则
dp[j] + M + (sum[i] - sum[j])2 < dp[k] + M + (sum[i] - sum[k])2.
化简该式:{ (dp[j] + sum[j]2) - (dp[k] + sum[k]2) } / 2(sum[j] - sum[k]) < sum[i]。

记 yj = (dp[j] + sum[j]2)
记 yk = (dp[k] + sum[k]2)
记 xj = 2sum[j]
记 xk = 2sum[k]

令 g(j, k) = (yj - yk) / (xj - xk)
当g(j, k) < sum[i]成立是,说明选择 j 优于选择 k。

假设k<j<i, 如果 g(i, j) < g(j, k), 则 j 永远不可能成为最优解
证明
当g(i, j) < sum[i]时, 选择 i 优于 选择 j, 因此,排除 j
当g(i, j) >= sum[i]时,选择 j 优于 选择 i, 又 g(j, k) > g(i, j) >=sum[i], 说明选择 k 优于 选择 j,因此,同样排除 j.

由于排除不必要的点,因此缩小了搜索空间。

步骤3:选择最优解
设k<j<i, 如果 g(i, j) < g(j, k), 则 j 永远不可能成为最优解。 因此整个有效点集应该呈现下凸(开口向上)性质,即:kj 的斜率 小于 ji 的斜率,如图1所示

图1

因此,从左到右,有效点集的 斜率是单调递增的。

斜率优化总结如下:

  1. 用一个单调队列 q 来维护解集。
  2. 更新q, 同时维护解集的下凸性:
    假设队列中从头到尾已经有元素k, j, i (k<j<i)。那么当d要入队的时候,我们维护队列的上凸性质,即如果g[d,i] < g[i,j],则将 i 点删除,直到找到g[d,x]>=g[x,y]为止(x,y都是队列中的元素),并将d点加入在该位置中。
  3. 求解:
    从队头开始,如果已有元素a b c (a<b<c),当 i 点要求解时,如果g[b,a] < sum[i],那么说明b点比a点更优,a点可以排除,于是a出队。最后dp[i] = dp[q[head]] + M + (sum[i] - sum[q[head]])2;。

代码如下:

//TODO

复杂度分析

空间复杂度:

注:本文主要参考了文献1,但文献1中由太多的错误,且排版混乱,叙述不清晰,因此在理解的基础上,写下此文。

参考文献

[1] http://www.cnblogs.com/ka200812/archive/2012/08/03/2621345.html

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,937评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,503评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,712评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,668评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,677评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,601评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,975评论 3 396
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,637评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,881评论 1 298
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,621评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,710评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,387评论 4 319
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,971评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,947评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,189评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,805评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,449评论 2 342

推荐阅读更多精彩内容

  • 背景 一年多以前我在知乎上答了有关LeetCode的问题, 分享了一些自己做题目的经验。 张土汪:刷leetcod...
    土汪阅读 12,719评论 0 33
  • 动态规划(Dynamic Programming) 本文包括: 动态规划定义 状态转移方程 动态规划算法步骤 最长...
    廖少少阅读 3,252评论 0 18
  • 回溯算法 回溯法:也称为试探法,它并不考虑问题规模的大小,而是从问题的最明显的最小规模开始逐步求解出可能的答案,并...
    fredal阅读 13,623评论 0 89
  • 分治方法 将问题划分成互不相交的子问题 递归地求解子问题 将子问题的解组合起来 动态规划(两个要素:最优子结构、子...
    superlj666阅读 491评论 0 0
  • #幸福是需要修出来的~每天进步1%~幸福实修09班~18-马荣 20170726(9/30)09班 【幸福三朵玫瑰...
    幸福实修09班马荣阅读 159评论 0 2