数据库与缓存的一致性

1 关于一致性

为加速系统性能一般都会引入缓存机制,比如 Redis。这种情况下当用户数据时一般会按照如下流程:

读过程

关于读的流程大家是没有异议的,但是对于数据的更新呢,如何操作才算合理呢?

  1. 先更新数据库再更新缓存。

  2. 先删缓存再更新数据库。

  3. 先更新数据库再删缓存。

2 一致性解决方法

2.1 缓存TTL

简单直接又暴力的方法,如果有些数据不重要,我们读完一次数据到缓存后设置个TTL即可,等待超时后缓存自动从数据库读取下数据。

2.2 先更新数据库 再更新缓存

大部分观点认为,做缓存不应该是去更新缓存,而是应该删除缓存,然后由下个请求去去缓存,发现不存在后再读取数据库,写入缓存。
原因一:线程安全角度
同时有请求A和请求B进行更新操作,那么会出现
(1)线程A更新了数据库
(2)线程B更新了数据库
(3)线程B更新了缓存
(4)线程A更新了缓存
这就出现请求A更新缓存应该比请求B更新缓存早才对,但是因为网络等原因,B却比A更早更新了缓存。这就导致了脏数据,因此不考虑。
原因二:业务场景角度
有如下两点:
(1)如果你是一个写数据库场景比较多,而读数据场景比较少的业务需求,采用这种方案就会导致,数据压根还没读到,缓存就被频繁的更新,浪费性能,我们的缓存是用在写的上面的,而再修改的时候我们一直修改是很不合理的,因为我们在为用不到缓存的地方去消耗资源。
(2)如果你写入数据库的值,并不是直接写入缓存的,而是要经过一系列复杂的计算再写入缓存。那么,每次写入数据库后,都再次计算写入缓存的值,无疑是浪费性能的。显然,删除缓存更为适合。
例子:
假如我们有A、B两个请求,A请求将age = 14,B请求将age = 12。我们看下正常执行跟非正常执行情况:

缓存旧数据

可发现如果出现网络震荡会导致缓存的数据是旧数据。因此这种方法不可取。并且如果是如下场景也不合适:

  1. 写场景多而读场景少的业务需求,此时缓存不是经常性的读,却被频繁的更新。

  2. 如果缓存的数据是经过各种复杂计算后写入的,那每次写入缓存都要运算一次,此法不可取。

2.3 先删缓存 再更新数据库

假如A先请求更改数据,B请求读数据,如果因为网络导致发生如下情况也会造成缓存脏数据,如果此时缓存没有设置TTL那会一直是脏数据。

缓存脏数据

上面这种情况如何解决呢?一般可以采用延时双删策略,他的核心执行流程如下:

public  void write(String key,Object value){
    redis.delKey(key);
    db.updateValue(value);
    Thread.sleep(1000); // 再次删除
    redis.delKey(key);
}

该思路落实到流程图上如下所示:

延时双删策略

sleep的时间要根据业务数据逻辑耗时而定,反正目的是确保读请求结束,写请求可以删除读请求造成的缓存脏数据

当然如果用的是主从写读架构,那处理思路跟上面类似,无非就是休眠时间再加上主从同步的时间即可。

主从模式二次删除

可是其实第二次删除还是有不妥的地方:

  1. 二次删除前面涉及到休眠,可能导致系统性能降低,可以采用异步的方式,再起一个线程来进行异步删除。

  2. 如果二次删除失败了,还是会导致缓存脏数据存在的啊!

2.4 先更新数据库 再删缓存

针对缓存更新问题,老外提出了一个名为《Cache-Aside pattern》的缓存更新套路,该策略在Facebook中也广泛使用,该策略指出:

  1. 失效:应用程序先从缓存取数据,没有得到,则从数据库中取数据,成功后,放到缓存中。

  2. 命中:应用程序从缓存中取数据,取到后返回。

  3. 更新:先把数据存到数据库中,成功后,再让缓存失效。

假如此时A、B两个线程同时请求,正常来讲不管你是读写分离还是单机版,读一般比写快。那删除缓存一般是有效的。

先更新数据库再删除缓存

但是也有可能别的原因导致读比写还慢,导致我们删了个寂寞,虽然这种情况很少发生。

当读比写还慢时

该方案相比先删除缓存再更新数据库还是稳妥些的,但是也不是万无一失的。不管是先删缓存再更新数据库还是先更新数据库再删缓存,如果删除缓存失败了都会导致缓存跟数据不一致问题

2.5 消息队列 确保消息删除

通过消息队列的确认消费机制来删除缓存。

消息队列机制确保删除

缺点也很明显:

  1. 对业务线代码造成大量的侵入,引入了中间件。

  2. 消息的延迟删除也会造成短暂的不一致。

2.6 专门程序+消息队列 确保消息删除

该方案启动一个订阅程序去订阅数据库的binlog,获得需要操作的数据。在应用程序中,另起一段程序,获得这个订阅程序传来的信息,进行删除缓存操作。

专门程序删除缓存

订阅binlog程序在mysql中有现成的中间件叫canal,可以完成订阅binlog日志的功能。

3 总结

分析后你会发现数据更新时缓存是删除不是更新,而删除缓存一般有三种方法:

  1. 如果缓存数据不敏感,直接给缓存设置TTL即可。

  2. 先删缓存再更新数据库,此时需配合延时双删技术,但可能导致二次删除失败。

  3. 先更新数据库再删缓存,此时需配合binlog消费 + 消息队列来实现。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,214评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,307评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,543评论 0 341
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,221评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,224评论 5 371
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,007评论 1 284
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,313评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,956评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,441评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,925评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,018评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,685评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,234评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,240评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,464评论 1 261
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,467评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,762评论 2 345

推荐阅读更多精彩内容