之前博文有关于Java8新特性介绍,但是内容过于简单,实例太少,遂准备做一个Java8新特性系列,目的是和大家一起分享学习java8的乐趣,提升工作效率。这个系列是流处理系列,我会以实际案例由浅及深介绍流处理的使用。
Stream简介
Java8中的Stream是对与集合对象有所加强的新特性,专注于集合对象进行各种非常便利,高效的聚合操作,同时提供串行与并行两种模式的汇聚操作,使用了fork/join并行方式来拆分任务、加速处理过程。注意,这里的stream与原先的文件I/O流没有必然关系,是在Java8中的新内容。
Stream有时类似于一个迭代器,但是相比原来的Iterator串行命令式的执行过程,stream通过并行方式去便利,遍历时stream数据会被分成多段,其中每一段都在不同的线程中进行处理,然后归并统一。
List<String> list = new ArrayList<>();
Stream<String> stream = list.stream();// 取流方式
准备
现提供一个简单的pojo类-Person.class
class Person{
String name;
String com;
Integer age;
Integer house;
public Person(String name, String com, Integer age, Integer house) {
this.name = name;
this.com = com;
this.age = age;
this.house = house;
}
public Integer getHouse() {
return house;
}
public void setHouse(Integer house) {
this.house = house;
}
public Person() {
}
public Person(String name, Integer age) {
this.name = name;
this.age = age;
}
public Person(String name, String com, Integer age) {
this.name = name;
this.com = com;
this.age = age;
}
public String getCom() {
return com;
}
public void setCom(String com) {
this.com = com;
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
public Integer getAge() {
return age;
}
public void setAge(Integer age) {
this.age = age;
}
@Override
public boolean equals(Object o) {
if (this == o) return true;
if (o == null || getClass() != o.getClass()) return false;
DecryptData.Person person = (DecryptData.Person) o;
return Objects.equals(name, person.name) &&
Objects.equals(age, person.age);
}
@Override
public int hashCode() {
return Objects.hash(name, age);
}
}
PK 传统方式vs新特性
简单介绍后,想必也很难理解概念性的东西,我们一步一步做简单的案例对比传统方式和新特性方式
1.集合遍历
@Test // 遍历集合
public void testName() throws Exception {
List<Person> peoples = new ArrayList<>(Arrays.asList(
new Person("name1",12),
new Person("name2",13),
new Person("name2",14),
new Person("name3",15)
));
// 传统增强for
for (Person people : peoples) {
System.out.println(people.getName());
}
// 新特性ForEach
peoples.forEach(people-> System.out.println(people.getName()));
}
2.查找年龄大于18的人员
@Test
public void filterAge() throws Exception {
List<Person> peoples = new ArrayList<>(Arrays.asList(
new Person("name1",12),
new Person("name2",13),
new Person("name3",33),
new Person("name4",21),
new Person("name1",22),
new Person("name2",15)
));
// 传统过滤
List<Person> ps=new ArrayList<>();
for (Person people : peoples) {
if (people.getAge()>18){
ps.add(people);
}
}
System.err.println(JSON.toJSONString(ps));
// 新特性过滤
List<Person> collect = peoples.stream().filter(person -> person.getAge() > 18).collect(toList());
System.err.println(JSON.toJSONString(collect));
}
结果:
[{"age":33,"name":"name3"},{"age":21,"name":"name4"},{"age":22,"name":"name1"}]
[{"age":33,"name":"name3"},{"age":21,"name":"name4"},{"age":22,"name":"name1"}]
传统方式需要我们去遍历判断代码量很多,流处理方式直接使用过滤器filter,像查询数据库一样对查询过滤。Stream完胜!
- 过滤获取属性
有时候我只想要获取姓名的集合并不想要所有person对象,那么在pk一下
@Test
public void filterFailed() throws Exception {
List<Person> peoples = new ArrayList<>(Arrays.asList(
new Person("name1",12),
new Person("name2",13),
new Person("name3",33),
new Person("name4",21),
new Person("name1",22),
new Person("name2",15)
));
// 传统增强for
List<String> names=new ArrayList<>();
for (Person people : peoples) {
names.add(people.getName());
}
System.err.println(JSON.toJSONString(names));
// 新特性ForEach
List<String> collect = peoples.stream().map(Person::getName).collect(toList());
System.err.println(JSON.toJSONString(collect));
}
结果:
["name1","name2","name3","name4","name1","name2"]
["name1","name2","name3","name4","name1","name2"]
同filter一样的道理,在代码量上可是减少了很多的代码。Stream胜出!
4.分组统计
那么问题来了,就上面几种优势也不是很明显啊,那么我们就来再看看两者的差距
@Test
public void statistic() throws Exception {
// 统计每个人房子数量
List<String> list = new ArrayList<>();
Stream<String> stream = list.stream();
List<Person> peoples = new ArrayList<>(Arrays.asList(
new Person("思聪","杭州",19,50),
new Person("马云","北京",50,100),
new Person("思聪","北京",19,20),
new Person("温州大婶","西安",1,120),
new Person("温州大婶","杭州",1,100),
new Person("我",null,18,0),
new Person("温州大婶","新西兰",1,200)
));
// 传统增强for 统计
List<Integer> sum =new ArrayList<>();
for (Person people : peoples) {
//人生如此艰难,我还要继续。。。此处省略
}
System.err.println(JSON.toJSONString(sum));
// 新特性ForEach
Map<String, IntSummaryStatistics> map= peoples.stream().collect(groupingBy(Person::getName,summarizingInt(Person::getHouse)));
System.err.println(JSON.toJSONString(map));
}
结果 :
没有对比哪来的伤害啊,传统敲代码的我完败。。。。
- 坑点
注意:流操作一个流只能进行一次处理操作,像下面这个的做法就会出现问题。
List<Person> peoples = new ArrayList<>(Arrays.asList(
new Person("思聪","杭州",19,50),
new Person("马云","北京",50,100),
new Person("思聪","北京",19,20),
new Person("温州大婶","西安",1,120),
new Person("温州大婶","杭州",1,100),
new Person("我",null,18,0),
new Person("温州大婶","新西兰",1,200)
));
//+++++ 坑点+++++
Stream<Person> stream = peoples.stream();
List<String> collect = stream.map(Person::getName).collect(toList()); // 第一次使用 stream
List<Person> collect1 = stream.filter(person -> person.getAge() > 18).collect(toList());// 第二次使用 stream
System.out.println();
异常:
java.lang.IllegalStateException: stream has already been operated upon or closed
解决方式:
我终于找到新特性的bug啦,别急,有解决方案:
@Test
public void testMyErr() throws Exception {
List<Person> peoples = new ArrayList<>(Arrays.asList(
new Person("思聪","杭州",19,50),
new Person("马云","北京",50,100),
new Person("思聪","北京",19,20),
new Person("温州大婶","西安",1,120),
new Person("温州大婶","杭州",1,100),
new Person("我",null,18,0),
new Person("温州大婶","新西兰",1,200)
));
//+++++ 坑点+++++
// Stream<Person> stream = peoples.stream();
// List<String> collect = stream.map(Person::getName).collect(toList()); // 第一次使用 stream
// List<Person> collect1 = stream.filter(person -> person.getAge() > 18).collect(toList());// 第二次使用 stream
//
// 类似于一个stream的池子,用的时候取,每次都是个新的对象
Supplier<Stream<Person>> streamSupplier = peoples::stream;
List<String> collect3 = streamSupplier.get().map(Person::getName).collect(toList()); // 第一次使用 stream
List<Person> collect4 =streamSupplier.get().filter(person -> person.getAge() > 18).collect(toList());// 第二次使用 stream
System.out.println();
}
6.再补充
前面由于仓促,有些不常用的用法没有提到,这里做出补充。
// 过滤 filter
List<Person> collect11 = streamSupplier.get().filter(person ->person.getAge() >= 22).collect(toList());
System.out.println(collect11);
// 选择字段过滤 map,这里可以在函数块中返回需要的数据
List<String> collect1 = streamSupplier.get().map(Person::getName).collect(toList());
List<String> collect11111 = streamSupplier.get().map(c->{
System.out.println("1111");
return c.getName() ;
}).collect(toList());
// 去重复,也比较常用,但是需要重写eques 和hashcode 的方法
List<Person> collect2 = streamSupplier.get().distinct().collect(toList());
// 限制条数,做分页可以使用
List<Person> collect3 = streamSupplier.get().limit(4).collect(toList());
// 统计数量
long count = stream.filter(p -> p.getAge() > 20).count();
// 扁平化
List<String[]> collect4 = Arrays.stream(strs).map(s -> s.split("")).distinct().collect(toList());
List<String[]> collect5 = Arrays.stream(strs).map(s -> s.split("a")).distinct().collect(toList());
// 终端操作
// 规约
Optional<Integer> reduce = streamSupplier.get().filter(s -> s.getAge() < 30).map(Person::getAge).reduce(Integer::sum);
Integer reduce1 = streamSupplier.get().filter(s -> s.getAge() < 40).map(Person::getAge).reduce(0,(a,b)->a+b);
Integer reduce2 = streamSupplier.get().filter(s -> s.getAge() < 40).map(Person::getAge).reduce(0,(a,b)->a+b);
Integer reduce3 = streamSupplier.get().filter(s -> s.getAge() < 40).map(Person::getAge).reduce(2,(a,b)->a+b);
输出结果:
简单过滤结果
[{"age":22,"name":"name2"},{"age":33,"name":"name3"},{"age":44,"name":"name4"},{"age":55,"name":"name5"},{"age":66,"name":"name6"},{"age":77,"name":"name7"},{"age":77,"name":"name7"},{"age":88,"name":"name2"}]
选择字段过滤结果
["name1","name2","name3","name4","name5","name6","name7","name7","name2"]
["name1","name2","name3","name4","name5","name6","name7","name7","name2"]
去重复结果
条数限制结果
[{"age":11,"name":"name1"},{"age":22,"name":"name2"},{"age":33,"name":"name3"},{"age":44,"name":"name4"},{"age":55,"name":"name5"},{"age":66,"name":"name6"},{"age":77,"name":"name7"},{"age":88,"name":"name2"}]
[{"age":11,"name":"name1"},{"age":22,"name":"name2"},{"age":33,"name":"name3"},{"age":44,"name":"name4"}]统计结果
8扁平化结果
[["j","a","v","a","8"],["i","s"],["e","a","s","y"],["t","o"],["u","s","e"]]
[["j","v","8"],["is"],["e","sy"],["to"],["use"]]
规约结果
66
66
68