三台主机的Hadoop3.1.0和zookeeper3.4.10全分布式集群部署

主机环境选用Ubuntu,分别是192.168.1.141,192.168.1.142,192.168.1.143,一主二仆的模式。
机器选用100多块的arm linux,竟然能跑起来。

一、环境准备

1、统一hosts名称

Master:192.168.1.141
Slave:192.168.1.142 192.168.1.143
更改各个主机上的/etc/hosts

#主机信息
192.168.1.141     hadoop01
#添加节点的信息
192.168.1.142     hadoop02
192.168.1.143     hadoop03

2、配置Master主机到slave主机ssh免密码登录

slave机器上创建 ~/.ssh


root@OrangePi:/# ssh-keygen -t rsa 
Generating public/private rsa key pair.
Enter file in which to save the key (/root/.ssh/id_rsa): 
Created directory '/root/.ssh'.
Enter passphrase (empty for no passphrase): 
Enter same passphrase again: 
Your identification has been saved in /root/.ssh/id_rsa.
Your public key has been saved in /root/.ssh/id_rsa.pub.
The key fingerprint is:
SHA256:eTjQhVzHIjWIAmP603tQYIf1/D+tSPDlrRD0D8bBEWY root@OrangePi
The key's randomart image is:
+---[RSA 2048]----+
|  +.oooo ==.E.   |
| o ooo.+=..*..   |
|.    .o +...o    |
| . . . . = o .   |
|  o o   S + *    |
|   . o   = * =   |
|    . .   + + +  |
|     .   . o +   |
|          . o    |
+----[SHA256]-----+
root@OrangePi:/# 

root@OrangePi:/# cd root
root@OrangePi:~#  cd .ssh
root@OrangePi:~/.ssh# cat id_rsa.pub >>authorized_keys
ssh到hadoop03和02
root@OrangePi:~/.ssh# scp authorized_keys root@hadoop02:/root/.ssh/authorized_keys
root@hadoop02's password: 
authorized_keys                                           100%  790     0.8KB/s   00:00    

测试一下免密码登录

root@OrangePi:~/.ssh# ssh hadoop02
Welcome to Ubuntu 16.04.1 LTS (GNU/Linux 3.10.65 aarch64)


记得slave机器上执行
sudo chmod 600 ~/.ssh/authorized_keys

主机全部互信

scp ~/.ssh/authorized_keys hadoop01:/root/.ssh/authorized_keys
scp ~/.ssh/authorized_keys hadoop02:/root/.ssh/authorized_keys
scp ~/.ssh/authorized_keys hadoop03:/root/.ssh/authorized_keys

3、各主机安装开启ntp

# sudo apt-get install ntp
# service ntp start

4、安装jdk

sudo add-apt-repository ppa:webupd8team/java
sudo apt-get update
sudo apt-get install oracle-java8-installer

root@OrangePi:/# java -version
java version "1.8.0_171"
Java(TM) SE Runtime Environment (build 1.8.0_171-b11)
Java HotSpot(TM) 64-Bit Server VM (build 25.171-b11, mixed mode)

精简方式的jdk home路径为 /usr/lib/jvm/java-8-oracle
写入etc/profile

export JAVA_HOME=/usr/lib/jvm/java-8-oracle 
export JRE_HOME=$JAVA_HOME/jre
export CLASSPATH=.:${JAVA_HOME}/lib:${JRE_HOME}/lib
export PATH=${JAVA_HOMR}/bin:$PATH

二、Hadoop集群安装


http://hadoop.apache.org/

1、创建目录

root@OrangePi:~# mkdir /home/data
root@OrangePi:~# mkdir /home/data/hdfs
root@OrangePi:~# cd /home/data/hdfs
root@OrangePi:/home/data/hdfs# mkdir name
root@OrangePi:/home/data/hdfs# mkdir data
root@OrangePi:/home/data/hdfs# mkdir tmp
root@OrangePi:/home/data/hdfs# sudo chmod -R 777 /home/data

在slave机器上执行

mkdir /home/data
mkdir /home/data/hdfs
cd /home/data/hdfs
mkdir name
mkdir data
mkdir tmp

配置etc/profile

export JAVA_HOME=/usr/lib/jvm/java-8-oracle 
export JRE_HOME=$JAVA_HOME/jre
export CLASSPATH=.:${JAVA_HOME}/lib:${JRE_HOME}/lib
export PATH=${JAVA_HOMR}/bin:$PATH

export HADOOP_HOME=/home/hadoop-3.1.0
export PATH=$PATH:$HADOOP_HOME/bin:$HADOOP_HOME/sbin


export HADOOP_COMMON_HOME=$HADOOP_HOME 
export HADOOP_HDFS_HOME=$HADOOP_HOME 
export HADOOP_MAPRED_HOME=$HADOOP_HOME
export HADOOP_YARN_HOME=$HADOOP_HOME 

export HADOOP_INSTALL=$HADOOP_HOME 
export HADOOP_COMMON_LIB_NATIVE_DIR=$HADOOP_HOME/lib/native 
export HADOOP_CONF_DIR=$HADOOP_HOME 
export HADOOP_PREFIX=$HADOOP_HOME 
export HADOOP_LIBEXEC_DIR=$HADOOP_HOME/libexec 
export JAVA_LIBRARY_PATH=$HADOOP_HOME/lib/native:$JAVA_LIBRARY_PATH 
export HADOOP_CONF_DIR=$HADOOP_PREFIX/etc/hadoop

export HDFS_DATANODE_USER=root
export HDFS_DATANODE_SECURE_USER=root
export HDFS_SECONDARYNAMENODE_USER=root
export HDFS_NAMENODE_USER=root

刷新启用命令
source /etc/profile

2、安装配置Hadoop

http://hadoop.apache.org/releases.html

cd /home/
mkdir hadoop
wget http://mirror.bit.edu.cn/apache/hadoop/common/hadoop-3.1.0/hadoop-3.1.0.tar.gz
tar zxvf hadoop-3.1.0.tar.gz -C /home/

3、配置core-site.xml

/home/hadoop-3.1.0/etc/hadoop\core-site.xml

<configuration>
    <property>
        <name>fs.default.name</name>
        <value>hdfs://hadoop01:9000</value>
    </property>
    <property>
        <name>hadoop.tmp.dir</name>
        <value>/home/data/hdfs/tmp</value>
    </property>
</configuration>

4、配置hdfs-site.xml

基本配置包括副本数量,数据存放目录等。

<configuration>
 
    <property>
        <name>dfs.replication</name>
        <value>2</value>
    </property>
    <property>
        <name>dfs.namenode.name.dir</name>
        <value>/home/data/hdfs/name</value>
    </property>
    <property>
        <name>dfs.namenode.data.dir</name>
        <value>/home/data/hdfs/data</value>
    </property>
</configuration>

5、配置yarn-site.xml

<configuration>

      <property>
        <name>yarn.resourcemanager.hostname</name>
        <value>hadoop01</value>
    </property>
    <property>
        <name>yarn.nodemanager.aux-services</name>
        <value>mapreduce_shuffle</value>
    </property>
</configuration>

6、配置mapred-site.xml

<configuration>
    <property>
        <name>mapreduce.framework.name</name>
        <value>yarn</value>
    </property>
    <property>
        <name>mapreduce.application.classpath</name>
        <value>
            /home/hadoop-3.1.0/etc/hadoop,
            /home/hadoop-3.1.0/share/hadoop/common/*,
            /home/hadoop-3.1.0/share/hadoop/common/lib/*,
            /home/hadoop-3.1.0/share/hadoop/hdfs/*,
            /home/hadoop-3.1.0/share/hadoop/hdfs/lib/*,
            /home/hadoop-3.1.0/share/hadoop/mapreduce/*,
            /home/hadoop-3.1.0/share/hadoop/mapreduce/lib/*,
            /home/hadoop-3.1.0/share/hadoop/yarn/*,
            /home/hadoop-3.1.0/share/hadoop/yarn/lib/*
        </value>
    </property>
</configuration>

7、配置slave

etc/hadoop/workers

hadoop01
hadoop02
hadoop03


8、配置java_home(根据具体的java home配置)

etc/hadoop/hadoop-env.sh

# The java implementation to use. By default, this environment
# variable is REQUIRED on ALL platforms except OS X!
#export JAVA_HOME= /usr/lib/jvm/java-8-oracle

9、复制配置到slave

cd /home
scp -r  hadoop-3.1.0  hadoop02:/home/
scp -r  hadoop-3.1.0  hadoop03:/home/

10、配置path

/etc/profile

export HADOOP_HOME=/home/hadoop-3.1.0
export PATH=$PATH:$HADOOP_HOME/bin:$HADOOP_HOME/sbin

source /etc/profile

三、Hadoop集群启动运行(master机器上执行)

1、启动namenode

格式化HDFS文件系统

#hadoop namenode -format

root@Hadoop01:~# ps -ef | grep hadoop
root      3047  2756  0 10:06 pts/0    00:00:00 grep --color=auto hadoop

现在启动namenode守护进程

# hadoop-daemon.sh start namenode

2、启动datanode

hdfs --daemon start namenode

hdfs --daemon start datanode

yarn --daemon start resourcemanager

yarn --daemon start nodemanager

root@Hadoop01:/home# jps
5104 ResourceManager
5351 NodeManager
5000 DataNode
5375 Jps


3、一步启动方式成功

start-all.sh
stop-all.sh

http://192.168.1.141:8088/cluster/nodes
相关端口

http://192.168.1.141:9870/dfshealth.html#tab-overview

4、验证sample

home下建test.txt
内容

hello word china chinese korea
groupby
建立目录
hadoop fs -mkdir /input
#hadoop fs -put test.txt /input
列出目录
hadoop fs -ls /

Found 1 items
drwxr-xr-x   - root supergroup          0 2018-05-11 06:47 /input

删除文件夹
hadoop fs -rm -r /output


#hadoop jar /home/hadoop-3.1.0/share/hadoop/mapreduce/hadoop-mapreduce-examples-3.1.0.jar  wordcount /input /output




    Map-Reduce Framework
        Map input records=2
        Map output records=6
        Map output bytes=63
        Map output materialized bytes=81
        Input split bytes=100
        Combine input records=6
        Combine output records=6
        Reduce input groups=6
        Reduce shuffle bytes=81
        Reduce input records=6
        Reduce output records=6
        Spilled Records=12
        Shuffled Maps =1
        Failed Shuffles=0
        Merged Map outputs=1
        GC time elapsed (ms)=1088
        CPU time spent (ms)=4840
        Physical memory (bytes) snapshot=326569984
        Virtual memory (bytes) snapshot=3757453312
        Total committed heap usage (bytes)=144109568
        Peak Map Physical memory (bytes)=210546688
        Peak Map Virtual memory (bytes)=2002776064
        Peak Reduce Physical memory (bytes)=116023296
        Peak Reduce Virtual memory (bytes)=1754677248
    Shuffle Errors
        BAD_ID=0
        CONNECTION=0
        IO_ERROR=0
        WRONG_LENGTH=0
        WRONG_MAP=0
        WRONG_REDUCE=0
    File Input Format Counters 
        Bytes Read=38
    File Output Format Counters 
        Bytes Written=51

查看结果

root@Hadoop01:/home#  hadoop fs -ls /output
WARNING: HADOOP_PREFIX has been replaced by HADOOP_HOME. Using value of HADOOP_PREFIX.
2018-05-11 13:31:47,807 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Found 2 items
-rw-r--r--   2 root supergroup          0 2018-05-11 13:30 /output/_SUCCESS
-rw-r--r--   2 root supergroup         51 2018-05-11 13:30 /output/part-r-00000

统计单词结果

root@Hadoop01:/home# hadoop fs -cat /output/part-r-00000
WARNING: HADOOP_PREFIX has been replaced by HADOOP_HOME. Using value of HADOOP_PREFIX.
2018-05-11 13:32:48,377 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
china   1
chinese 1
groupby 1
hello   1
korea   1
word    1


每个文件默认blocksize=128mb

5、解决超出节点内存的问题

mapred-site.xml

    <property>
  <name>mapreduce.map.memory.mb</name>
    <value>512</value>
    </property>
    <property>
      <name>mapreduce.map.java.opts</name>
      <value>-Xmx512M</value>
    </property>
    <property>
      <name>mapreduce.reduce.memory.mb</name>
      <value>512</value>
    </property>
    <property>
      <name>mapreduce.reduce.java.opts</name>
      <value>-Xmx256M</value>
    </property>

6、解决hadoop时间跟系统不一致

# cat hadoop-env.sh
.........
export HADOOP_OPTS="$HADOOP_OPTS -Duser.timezone=GMT+08"
.........
# cat yarn-env.sh
......... 
YARN_OPTS="$YARN_OPTS -Duser.timezone=GMT+08"
.........

涉及到hbase的也设置时区

# cat hbase-env.sh
.........
export TZ="Asia/Shanghai"
.........

三、安装zookeeper集群

1、下载安装zookeeper 3.4.10版本

wget http://mirror.bit.edu.cn/apache/zookeeper/zookeeper-3.4.10/zookeeper-3.4.10.tar.gz
tar zxvf zookeeper-3.4.10.tar.gz

2、配置文件

mkdir /home/zookeeper-3.4.10/data
 mkdir -p  /home/zookeeper-3.4.10/datalog
cd /home/zookeeper-3.4.10/conf
复制配置文件
cp zoo_sample.cfg zoo.cfg

配置文件内容

# The number of milliseconds of each tick
tickTime=2000
# The number of ticks that the initial 
# synchronization phase can take
initLimit=10
# The number of ticks that can pass between 
# sending a request and getting an acknowledgement
syncLimit=5
# the directory where the snapshot is stored.
# do not use /tmp for storage, /tmp here is just 
# example sakes.
dataDir=/home/zookeeper-3.4.10/data
dataLogDir=/home/zookeeper-3.4.10/datalog
# the port at which the clients will connect
clientPort=2181
# the maximum number of client connections.
# increase this if you need to handle more clients
#maxClientCnxns=60
#
# Be sure to read the maintenance section of the 
# administrator guide before turning on autopurge.
#
# http://zookeeper.apache.org/doc/current/zookeeperAdmin.html#sc_maintenance
#
# The number of snapshots to retain in dataDir
#autopurge.snapRetainCount=3
# Purge task interval in hours
# Set to "0" to disable auto purge feature
#autopurge.purgeInterval=1
server.0=hadoop01:2888:3888
server.1=hadoop02:2888:3888
server.2=hadoop03:2888:3888

3、制作myid文件

在zookeeper的data目录下创建myid文件,master机内容0,其他未1和2;

4、复制zookeeper到从机(复制完成记得修改myid)

scp -r  zookeeper-3.4.10  hadoop02:/home/
scp -r  zookeeper-3.4.10  hadoop03:/home/

5、配置各台主机的Profile文件

etc/profile添加

export ZOOKEEPER_HOME=/home/zookeeper-3.4.10/data
export PATH=$PATH:$ZOOKEEPER_HOME/bin:$ZOOKEEPER_HOME/conf

记得 source /etc/profile生效

四、启动zookeeper集群

1、各个主机启动zookeeper

root@Hadoop01:/home# zkServer.sh start
ZooKeeper JMX enabled by default
Using config: /home/zookeeper-3.4.10/bin/../conf/zoo.cfg
Starting zookeeper ... STARTED
root@Hadoop01:/home# jps
7105 DataNode
6982 NameNode
7272 SecondaryNameNode
7580 ResourceManager
8860 QuorumPeerMain
8878 Jps
7695 NodeManager
root@Hadoop01:/home# 


1和3默认成 follower2号机默认为leader

root@Hadoop03:~#  zkServer.sh status
ZooKeeper JMX enabled by default
Using config: /home/zookeeper-3.4.10/bin/../conf/zoo.cfg
Mode: follower
root@Hadoop03:~# 

停止命令

zkServer.sh stop

五、配置hadoop相关zookeeper

1、在各主机上建立journal目录

  mkdir  /home/data/journal

2、修改core-site.xml

     <!-- 指定hdfs的nameservice为ns -->
     <property>
          <name>fs.defaultFS</name>
          <value>hdfs://ns</value>
     </property>
     <!--指定hadoop数据临时存放目录-->
     <property>
          <name>hadoop.tmp.dir</name>
          <value>/home/data/hdfs/tmp</value>
     </property>

     <property>
          <name>io.file.buffer.size</name>
          <value>4096</value>
     </property>
     <!--指定zookeeper地址-->
     <property>
          <name>ha.zookeeper.quorum</name>
          <value>hadoop01:2181,hadoop02:2181,hadoop03:2181</value>
     </property>

2、修改hdfs-site.xml

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<!--
  Licensed under the Apache License, Version 2.0 (the "License");
  you may not use this file except in compliance with the License.
  You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

  Unless required by applicable law or agreed to in writing, software
  distributed under the License is distributed on an "AS IS" BASIS,
  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  See the License for the specific language governing permissions and
  limitations under the License. See accompanying LICENSE file.
-->

<!-- Put site-specific property overrides in this file. -->

<configuration>
<!--指定hdfs的nameservice为ns,需要和core-site.xml中的保持一致 -->
    <property>
        <name>dfs.nameservices</name>
        <value>ns</value>
    </property>
    <!-- ns下面有两个NameNode,分别是nn1,nn2 -->
    <property>
       <name>dfs.ha.namenodes.ns</name>
       <value>nn1,nn2</value>
    </property>
    <!-- nn1的RPC通信地址 -->
    <property>
       <name>dfs.namenode.rpc-address.ns.nn1</name>
       <value>hadoop01:9820</value>
    </property>
    <!-- nn1的http通信地址 -->
    <property>
        <name>dfs.namenode.http-address.ns.nn1</name>
        <value>hadoop01:9870</value>
    </property>
    <!-- nn2的RPC通信地址 -->
    <property>
        <name>dfs.namenode.rpc-address.ns.nn2</name>
        <value>hadoop02:9820</value>
    </property>
    <!-- nn2的http通信地址 -->
    <property>
        <name>dfs.namenode.http-address.ns.nn2</name>
        <value>hadoop02:9870</value>
    </property>
    <!-- 指定NameNode的元数据在JournalNode上的存放位置 -->
    <property>
         <name>dfs.namenode.shared.edits.dir</name>
         <value>qjournal://hadoop01;hadoop02;hadoop03/ns</value>
    </property>
    <!-- 指定JournalNode在本地磁盘存放数据的位置 -->
    <property>
          <name>dfs.journalnode.edits.dir</name>
          <value>/home/data/journal</value>
    </property>
    <!-- 开启NameNode故障时自动切换 -->
    <property>
          <name>dfs.ha.automatic-failover.enabled</name>
          <value>true</value>
    </property>
    <!-- 配置失败自动切换实现方式 -->
    <property>
            <name>dfs.client.failover.proxy.provider.ns</name>
            <value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value>
    </property>
    <!-- 配置隔离机制,如果ssh是默认22端口,value直接写sshfence即可(hadoop:22022) -->
    <property>
             <name>dfs.ha.fencing.methods</name>
             <!-- <value>sshfence</value> -->
                 <value>
                    sshfence
                    shell(/bin/true)
                </value>
    </property>
    <!-- 使用隔离机制时需要ssh免登陆 -->
    <property>
            <name>dfs.ha.fencing.ssh.private-key-files</name>
            <value>/root/.ssh/id_rsa</value>
    </property>

    <property>
        <name>dfs.namenode.name.dir</name>
        <value>file:/home/data/hdfs/name</value>
    </property>

    <property>
        <name>dfs.datanode.data.dir</name>
        <value>file:/home/data/hdfs/data</value>
    </property>

    <property>
       <name>dfs.replication</name>
       <value>2</value>
    </property>
    <!-- 在NN和DN上开启WebHDFS (REST API)功能,不是必须 -->
    <property>
       <name>dfs.webhdfs.enabled</name>
       <value>true</value>
    </property>
</configuration>

同步文件

scp -r  /home/hadoop-3.1.0/etc/hadoop  hadoop02:/home/hadoop-3.1.0/etc
scp -r  /home/hadoop-3.1.0/etc/hadoop  hadoop03:/home/hadoop-3.1.0/etc

3、首次启动

1、首先启动各个节点的Zookeeper,在各个节点上执行以下命令:
zkServer.sh start
2、在某一个namenode节点执行如下命令,创建命名空间
hdfs zkfc -formatZK
3、在每个journalnode节点用如下命令启动journalnode
hdfs --daemon start journalnode
4、在主namenode节点格式化namenode和journalnode目录
hdfs namenode -format ns
5、在主namenode节点启动namenode进程
hdfs --daemon start namenode
6、在备namenode节点执行第一行命令,这个是把备namenode节点的目录格式化并把元数据从主namenode节点copy过来,并且这个命令不会把journalnode目录再格式化了!然后用第二个命令启动备namenode进程!
hdfs namenode -bootstrapStandby
hdfs --daemon start namenode
7、在两个namenode节点都执行以下命令
hdfs --daemon start zkfc
8、在所有datanode节点都执行以下命令启动datanode
hadoop-daemon.sh start datanode

http://192.168.1.142:9870/dfshealth.html#tab-overview

http://192.168.1.141:9870/dfshealth.html#tab-overview

后续日常
start-all.sh
stop-all.sh
即可

3、故障测试

在02上

root@Hadoop02:~# jps
3410 QuorumPeerMain
5636 DFSZKFailoverController
5765 NodeManager
5367 DataNode
5287 NameNode
5498 JournalNode
5979 Jps

kill namenode

root@Hadoop02:~# kill -9 5287

回去看standby的是否变成active自动切换成功图片


至此,安装全部完成,从安装系统到完全跑通,历时2.5天时间。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,362评论 5 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,330评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,247评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,560评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,580评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,569评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,929评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,587评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,840评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,596评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,678评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,366评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,945评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,929评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,165评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,271评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,403评论 2 342

推荐阅读更多精彩内容

  • 一、系统参数配置优化 1、系统内核参数优化配置 修改文件/etc/sysctl.conf,添加如下配置,然后执行s...
    张伟科阅读 3,720评论 0 14
  • 之前的有点忘记了,这里在云笔记拿出来再玩玩.看不懂的可以留言 大家可以尝试下Ambari来配置Hadoop的相关环...
    HT_Jonson阅读 2,938评论 0 50
  • 1. Zookeeper介绍: 1.基本介绍: Zookeeper: 为分布式应用提供分布式协作(协调)服务。使用...
    奉先阅读 4,539评论 0 10
  • 首先还是先说一下Zookeeper在Hadoop集群的作用,以前我们学习Hadoop伪分布式的时候没有用到Zook...
    文子轩阅读 842评论 0 2
  • 在三.八妇女节来临之际,谨以此首诗献给我悉心照顾这个家的妻子 妻子 本是殷家娇气女, 寒门愿嫁享清年。 相...
    春晖旭日阅读 205评论 0 0