本文学习费章军老师文章Genome of Solanum pimpinellifolium provides insights into structural variants during tomato breeding 如何鉴定SV。
其流程见 https://github.com/GaoLei-bio/SV
1 SV-calling
1.1 基因组间比较
简单思路: 2个基因组比较--》调取unique 比对--〉二代reads比对过滤
软件准备:
- minimap2 (v2.11 or higher)
- sam2delta.py (RaGoo 下的一个脚本,将sam格式变为nucmer的格式)
- Assemblytics
- samtools (v1.5 or higher)
- blast+
- python 2.7
-- operator
-- pathlib
-- argparse
-- os
-- re
-- subprocess
-- sys
数据准备:
- reference genome
- query genome (二者质量较高,且相关物种;)
- 两个基因组所对应的illumine reads (因为组装不完整,导致没有组装的区域被认为是delete,因此用二代数据过滤SV)
- QryRead2Ref.bam (sorted, rmdup; query reads 比对到reference;)
- RefRead2Qry.bam (sorted, rmdup;ref reads比对到Query genome)
- Ref_self.bam; 同上
- Qry_self.bam; 同上
简单操练一下:
将下载的所有脚本置于一个文件即可
## 运行SV_calling.sh 即可
Command:
bash path_to_SV_calling_script/SV_calling.sh \
path_to_SV_calling_script \
<Reference_genome_file> \
<Query_genome_file> \
<Prefix_for_outputs> \
<number of threads> \
<min_SV_size> \
<max_SV_size> \
<assemblytics_path>
### 具体数据
bash path_to_SV_calling_script/SV_calling.sh \
path_to_SV_calling_script \
SL4.0.genome.fasta \
Pimp_v1.4.fasta \
SP2SL 24 10 1000000 \
path_to_assemblytics_scripts
## 上述的4个bam文件必须放在当前工作目录下
结果:
- SP2SL.Master_list.tsv
- SP2SL.NR.bed (用于下一步)
1.2 pacbio reads进行鉴定SV (可选)
数据准备:
- Prefix_for_outputs.NR.bed: 上一步结果
- Reference_genome_file: fasta
- Query_genome_file: fasta
- Ref_base_pbsv_vcf (利用pbsv 将query pacbio reads比对到reference genome 获得SV)
- Qry_base_pbsv_vcf (利用pbsv 将reference pacbio reads比对到Query genome 获得SV)
直接操练
Command:
bash path_to_SV_calling_script/SV_PacBio.sh \
path_to_SV_calling_script \
<Reference_genome_file> \
<Query_genome_file> \
<Prefix_for_outputs> \
<number of threads> \
<Ref_base_pbsv_vcf> \
<Qry_base_pbsv_vcf>
## 具体例子
For example:
bash path_to_SV_calling_script/SV_PacBio.sh \
path_to_SV_calling_script \
SL4.0.genome.fasta \
Pimp_v1.4.fasta \
SP2SL 24 \
PimpReads2SL4.0.var.vcf \
HeinzReads2Pimp.var.vcf
结果:
- SP2SL.Master_list.tsv
可将上述两种方法得到的SV结果进行合并即可。
2 SV-genotyping
主要程序 SV_genotyping.py, 且在Example中有实例文件
准备数据:
- 重测序数据分别比对到Query 和Ref genome (bwa即可【<3 bp错配】,去重复,)并排序
Parameters:
INPUT=Example/Example_SV.tsv # Path to your input SV file. A example of input SV file is provided.
sample=Sample_name # Sample name, prefix of outputs
Reference=Reference_genome # Path to Reference genome, fasta format, indexed by samtools faidx
Query=Query_genome # Path to Query genome , fasta format, indexed by samtools faidx
Ref_bam=Reference_base_bam # Sorted bam file with reads aligned on Reference genome
Qry_bam=Query_base_bam # Sorted bam file with reads aligned on Query genome
Mismath=3 # Allowed mismath percentage of aligned read
## 实例数据
python SV_genotyping.py Example/Example_input.tsv \
Example Example/Reference.fasta \
Example/Query.fasta \
Example/Sample.Ref_base.bam \
Example/Sample.Qry_base.bam 3
结果
- Example.GT.txt.
head Example.GT.txt.
#Genotype: R for homozygous Reference genotype; Q for homozygous Query genotype; H for Heterozygous genotype; U for Undetermined.
SV_ID Example_1m
SV_w_5206 Q
SV_w_5207 Q
SV_w_5209 R
SV_w_5210 Q
SV_w_5211 Q
SV_w_5212 H
SV_w_5213 Q
SV_w_5214 Q