Kafka Connect 概念

       Kafka Connect是一个用于将数据流输入和输出Kafka的框架。Confluent平台附带了几个内置connector,可以使用这些connector进行关系数据库或HDFS等常用系统到kafka的数据传输。为了有效地讨论Kafka Connect的内部工作,建立一些主要的概念是有帮助的。

  • Connectors:通过管理task来协调数据流的高级抽象
  • Tasks:如何将数据复制到Kafka或从Kafka复制数据的实现
  • Workers:执行Connector和Task的运行进程
  • Converters: 用于在Connect和外部系统发送或接收数据之间转换数据的代码
  • Transforms:更改由连接器生成或发送到连接器的每个消息的简单逻辑

Connectors

       Kafka Connect中的connector定义了数据应该从哪里复制到哪里。connector实例是一种逻辑作业,负责管理Kafka与另一个系统之间的数据复制。
       我们鼓励用户利用现有的connector。但是,可以从头编写一个新的connector插件。在高层次上,希望编写新连接器插件的开发人员遵循以下工作流。


image.png

Tasks

       Task是Connect数据模型中的主要处理数据的角色。每个connector实例协调一组实际复制数据的task。通过允许connector将单个作业分解为多个task,Kafka Connect提供了内置的对并行性和可伸缩数据复制的支持,只需很少的配置。这些任务没有存储任何状态。任务状态存储在Kafka中的特殊主题config.storage.topic和status.storage.topic中。因此,可以在任何时候启动、停止或重新启动任务,以提供弹性的、可伸缩的数据管道。


image.png

Task再平衡

       当connector首次提交到集群时,workers会重新平衡集群中的所有connector及其tasks,以便每个worker的工作量大致相同。当connector增加或减少它们所需的task数量,或者更改connector的配置时,也会使用相同的重新平衡过程。当一个worker失败时,task在活动的worker之间重新平衡。当一个task失败时,不会触发再平衡,因为task失败被认为是一个例外情况。因此,失败的task不会被框架自动重新启动,应该通过REST API重新启动。


image.png

Workers

Standalone Workers

       Standalone模式是最简单的模式,用单一进程负责执行所有connector和task。

Distributed Workers

       分布式模式为Kafka Connect提供了可扩展性和自动容错能力。在分布式模式下,你可以使用相同的组启动许多worker进程。它们自动协调以跨所有可用的worker调度connector和task的执行。如果你添加一个worker、关闭一个worker或某个worker意外失败,那么其余的worker将检测到这一点,并自动协调,在可用的worker集重新分发connector和task。


image.png

Converters

       在向Kafka写入或从Kafka读取数据时,Converter是使Kafka Connect支持特定数据格式所必需的。task使用转换器将数据格式从字节更改为连接内部数据格式,反之亦然。
       默认提供以下converters:

  • AvroConverter(建议):与Schema Registry一起使用
  • JsonConverter:适合结构数据
  • StringConverter:简单的字符串格式
  • ByteArrayConverter:提供不进行转换的“传递”选项
           转换器与连接器本身解耦,以便在连接器之间自然地重用转换器。


    image.png

Transforms

       Connector可以配置转换,以便对单个消息进行简单且轻量的修改。这对于小数据的调整和事件路由十分方便,且可以在connector配置中将多个转换链接在一起。然而,应用于多个消息的更复杂的转换最好使用KSQL和Kafka Stream实现。
       转换是一个简单的函数,输入一条记录,并输出一条修改过的记录。Kafka Connect提供许多转换,它们都执行简单但有用的修改。可以使用自己的逻辑定制实现转换接口,将它们打包为Kafka Connect插件,将它们与connector一起使用。
       当转换与source connector一起使用时,Kafka Connect通过第一个转换传递connector生成的每条源记录,第一个转换对其进行修改并输出一个新的源记录。将更新后的源记录传递到链中的下一个转换,该转换再生成一个新的修改后的源记录。最后更新的源记录会被转换为二进制格式写入到kafka。
       转换也可以与sink connector一起使用。
       以下为可以使用的transform:
https://docs.confluent.io/current/connect/transforms/index.html

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,602评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,442评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,878评论 0 344
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,306评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,330评论 5 373
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,071评论 1 285
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,382评论 3 400
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,006评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,512评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,965评论 2 325
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,094评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,732评论 4 323
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,283评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,286评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,512评论 1 262
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,536评论 2 354
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,828评论 2 345

推荐阅读更多精彩内容