以下示例来自这篇神文
同时这有一篇关于SVD分解的理解,个人感觉讲的也很好
PCA算法
总结一下PCA的算法步骤:
设有m条n维数据。
1)将原始数据按列组成n行m列矩阵X
2)将X的每一行(代表一个属性字段)进行零均值化,即减去这一行的均值
3)求出协方差矩阵4)求出协方差矩阵的特征值及对应的特征向量
5)将特征向量按对应特征值大小从上到下按行排列成矩阵,取前k行组成矩阵P
6)Y=PX即为降维到k维后的数据
实例
这里是上文提到的
为例,我们用PCA方法将这组二维数据其降到一维。
因为这个矩阵的每行已经是零均值,这里我们直接求协方差矩阵:
然后求其特征值和特征向量,具体求解方法不再详述,可以参考相关资料。求解后特征值为:
其对应的特征向量分别是:
其中对应的特征向量分别是一个通解,c1c1和c2c2可取任意实数。那么标准化后的特征向量为:
因此我们的矩阵P是:
可以验证协方差矩阵C的对角化:
最后我们用P的第一行乘以数据矩阵,就得到了降维后的表示:
降维投影结果如下图: