数据科学 IPython 笔记本 8.1 matplotlib

8.1 matplotlib

原文:matplotlib

译者:飞龙

协议:CC BY-NC-SA 4.0

致谢:派生于 Olivier Grisel 的 sklearn 和 IPython 并行机器学习

  • 设置全局参数
  • 基本绘图
  • 直方图
  • 相同绘图上的两个直方图
  • 散点图
%matplotlib inline
import pandas as pd
import numpy as np
import pylab as plt
import seaborn

设置全局参数

# 设置 matplotlib 图形的全局默认大小
plt.rc('figure', figsize=(10, 5))

# 将 seaborn 美学参数设为默认值
seaborn.set()

基本绘图

x = np.linspace(0, 2, 10)

plt.plot(x, x, 'o-', label='linear')
plt.plot(x, x ** 2, 'x-', label='quadratic')

plt.legend(loc='best')
plt.title('Linear vs Quadratic progression')
plt.xlabel('Input')
plt.ylabel('Output');
plt.show()
png

直方图

# 高斯,均值 1,标准差 0.5,1000 个元素
samples = np.random.normal(loc=1.0, scale=0.5, size=1000)
print(samples.shape)
print(samples.dtype)
print(samples[:30])
plt.hist(samples, bins=50);
plt.show()

'''
(1000,)
float64
[ 0.6806888   0.72202042  1.40490113  1.13979846  0.5729488   1.32584077
  0.61635621  0.60340336  1.29453467  0.69841457  0.6975998   0.72315991
  0.66912189  1.03420801  0.62283168  0.38582511  0.89488414  1.4802518
  1.43819256  0.98605861  0.60402232  1.03820507  0.35598796  1.32901087
  1.03194436  1.3374366   1.82526334  1.26614489  1.20061661  0.86344001]
'''
png

相同绘图上的两个直方图

samples_1 = np.random.normal(loc=1, scale=.5, size=10000)
samples_2 = np.random.standard_t(df=10, size=10000)
bins = np.linspace(-3, 3, 50)

# 设置透明度,并使用相同的桶
# 因为我们绘制两个直方图
plt.hist(samples_1, bins=bins, alpha=0.5, label='samples 1')
plt.hist(samples_2, bins=bins, alpha=0.5, label='samples 2')
plt.legend(loc='upper left');
plt.show()
png

散点图

plt.scatter(samples_1, samples_2, alpha=0.1);
plt.show()
png
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 205,132评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,802评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,566评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,858评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,867评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,695评论 1 282
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,064评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,705评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 42,915评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,677评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,796评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,432评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,041评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,992评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,223评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,185评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,535评论 2 343

推荐阅读更多精彩内容