爬虫入门练习(三)爬取小猪租房网信息

声明:本文参考Python实战计划学习笔记2.1:将爬取的数据存入Mongodb
其他参考资料:
Python爬虫包 BeautifulSoup 学习(十一) CSS 选择器
python爬虫:BeautifulSoup 使用select方法详解


爬取小猪网上上海的租房信息,部分结果如下所示:

image.png

具体代码如下:

注意运行本代码前需先启动MongDB数据库服务,启动方法见:
MongoDB+MongoVUE的安装

#coding=utf-8
from bs4 import BeautifulSoup
import requests
import time
import pymongo


def get_detail_info(url, data=None):

    # 爬取单条租房信息(标题,图片,房东,日租金,房东性别,房东头像)
    wb_data = requests.get(url)
    soup = BeautifulSoup(wb_data.text, 'lxml')
    time.sleep(2)
    # selcet方法的使用请搜索CCS选择器
    title = soup.select('h4 > em')[0].get_text()   # 标题
    address = soup.select('span.pr5')[0].get_text()  # 地址
    rent = soup.select('div.day_l > span')[0].get_text()  #日租金:div是标签,day_I是其属性,span是下一级标签
    image = soup.select('#curBigImage')[0].get('src') #图片
    lorder_pic = soup.select('div.member_pic > a > img')[0].get('src') #房东头像
    lorder_name = soup.select('a.lorder_name')[0].get_text()  # 房东名字
    lorder_sex = soup.select('#floatRightBox > div.js_box.clearfix > div.w_240 > h6 > span')[0].get('class')  # 房东性别

    def get_gender(class_name):
        if class_name == "member_boy_ico":
            return  "男"
        else:
            return "女"

    data = {
        '标题': title,
        '地址': address,
        '日租金': rent,
        '图片': image,
        '房东头像': lorder_pic,
        '房东姓名': lorder_name,
        '房东性别': get_gender(lorder_sex)
    }   
    print(data)
    return data


def get_all_data(urls): # 传入主页链接集(本例是3页,3个链接)
    all_data = []
    for url in urls: #遍历链接
        wb_data = requests.get(url) #获取链接内容
        soup = BeautifulSoup(wb_data.text, 'lxml')  #解析链接
        links = soup.select('#page_list > ul > li > a') # 使用CCS选择器,选取每个租房信息的链接
        for link in links:
            href = link.get('href')
            all_data.append(get_detail_info(href))   #调用get_detail_info函数,将抓取的租房信息添加进列表all_data
    return all_data

    
# 定义数据库
client = pymongo.MongoClient('localhost', 27017)   # 建立与数据库的连接
rent_info = client['rent_info']  #创建数据库rent_info
sheet_table = rent_info['sheet_table']  # 创建表单sheet_table

k=input("please enter the num of page that you want to crawl:")
urls = ['http://sh.xiaozhu.com/search-duanzufang-p{}-0/'.format(str(i)) for i in range(1, k+1)]
# 设置3页的租房信息的链接
datas = get_all_data(urls)  #调用get_all_data函数,将抓取的信息存入列表datas

for item in datas:   
    sheet_table.insert_one(item) #将数据存入数据库

# for item in sheet_table.find():
    # 筛选出日租金大于等于500的租房信息,并打印出来
#     if int(item['日租金']) >= 500:
#         print(item)


## 本代码经测试无问题

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,732评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,496评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,264评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,807评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,806评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,675评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,029评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,683评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 41,704评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,666评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,773评论 1 332
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,413评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,016评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,978评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,204评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,083评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,503评论 2 343

推荐阅读更多精彩内容

  • # Python 资源大全中文版 我想很多程序员应该记得 GitHub 上有一个 Awesome - XXX 系列...
    aimaile阅读 26,440评论 6 428
  • 爬虫是一个比较容易上手的技术,也许花5分钟看一篇文档就能爬取单个网页上的数据。但对于大规模爬虫,完全就是另一回事,...
    真依然很拉风阅读 9,644评论 5 114
  • 我为什么不该痛快地好好活一次呢?人一生就只能活一次,一旦错过了机会,什么都完了。 曾树生 巴金《寒夜》
    素兮0728阅读 271评论 0 0
  • 简而言之,一个程序至少有一个进程,一个进程至少有一个线程.线程的划分尺度小于进程,使得多线程程序的并发性高。另外,...
    乖乖果效36阅读 252评论 0 0