R 记录

library(pheatmap)

data<- read.table("new 1.txt",header = T, row.names = 1,quote = "")

data1 <- log10(data+1)/max(log10(data+1)) 数据标准化

pheatmap::pheatmap(data,cluster_rows = FALSE)

data<- read.table("new 3.txt",header = T, row.names = 1,quote = "")

pheatmap::pheatmap(data,cluster_rows = FALSE)

`data1<- read.table("6",header = T, row.names = 1,quote = "")

max(data1)

pheatmap::pheatmap(data1)

data1<- read.table("10",header = T, row.names = 1,quote = "")

max(data1)

pheatmap::pheatmap(data1)

data1<- read.table("12.txt",header = T, row.names = 1)

da(data1)

? read.table

data1<- read.table("12.txt",header = T, row.names = 1)

pheatmap::pheatmap(data1)

data<- read.table("5",header = T, row.names = 1,quote = "")

pheatmap::pheatmap(data,show_rownames=FALSE)

dr<- dist(as.matrix(t(data3)),method = "euclidean", diag = T, upper = T)

write.table(as.matrix(dr))

p1 <- pheatmap(data3, main = "heatmap name",

              show_rownames=F,  cluster_rows=T, cluster_cols=T,

              clustering_method = "complete",

              clustering_distance_cols = "euclidean",

              clustering_distance_rows = "euclidean",

              fontsize = 16, fontsize_col = 16, cellwidth = 24,

              cellheight = 2)

setwd("G:/jiaoji")  ##set work path

r <- read.table("5",header=T)  ##read table of expression data, have table header

row.names(r) <- r$NAME  ##set rowname

r1 <- r[,-1]  ##delete the first column

r0<-data.matrix(r1)  ##convert data frame[size=15px] to numeric matrix[/size]

ra <- scale(r0,center = T, scale = T)  ##scaling and centering for per column data, normalization?

library(proxy)          ##upload the proxy package for simil function

dr <- dist(as.matrix(t(ra)), method = "euclidean", diag = T, upper = T)        ##[size=13px]calculate the euclidean distance of columns, export all data [/size]

write.table(as.matrix(dr),"test.ed.txt")    ##export ED matrix data to test.ed.txt file

sr <- simil(as.matrix(t(ra)), method = "correlation", diag = T, upper = T)  ##[size=13px]calculate the correlation coefficient of columns, export all data [/size]

write.table(as.matrix(sr),"test.cc.txt")    ##export [size=13px]correlation coefficient[/size] matrix data to test.ed.txt file

library(pheatmap)

breaks1 <- seq(-10, 10, by = 0.2)  ##sets the minimum (0), the maximum (15), and the increasing steps (+1) for the color scale

breaks2 <- seq(-10,10,length=100)

bk3 = unique(c(seq(-2,0.98, length=50), seq(0.98,1, 50), seq(1, 4, length=50)))

colors = colorRampPalette(rev(c("#D73027", "#FC8D59", "#FEE090", "#FFFFBF", "#E0F3F8", "#91BFDB", "#4575B4")))(length(breaks1))

p1 <- pheatmap(ra, main = "heatmap name", show_rownames=F,  cluster_rows=T, cluster_cols=T, clustering_method = "complete", clustering_distance_cols = "euclidean", clustering_distance_rows = "euclidean", fontsize = 16, fontsize_col = 16, cellwidth = 24, cellheight = 2, breaks = breaks1, color = colors)                                            ##use scale data for drawing heatmap

p2 <- pheatmap(r0, main = "heatmap name", show_rownames=F, scale = "column", cluster_rows=T, cluster_cols=T, clustering_method = "complete", clustering_distance_cols = "euclidean", clustering_distance_rows = "euclidean", fontsize = 16, fontsize_col = 16, cellwidth = 24, cellheight = 2, breaks = breaks1, color = colors)                  ##pheatmap can scale the data and don't need scale data first, the darwing picture

ra <- scale(data3,center = T, scale = T)

pheatmap::pheatmap(ra)

https://www.google.com/search?ei=lZRqWsjoD8ml8AXn8oLIDQ&q=+log++%E5%BD%92%E4%B8%80%E5%8C%96+&oq=+log++%E5%BD%92%E4%B8%80%E5%8C%96+&gs_l=psy-ab.3..0i30k1.64983.77069.0.77263.13.13.0.0.0.0.145.1335.7j6.13.0....0...1c.1.64.psy-ab..0.1.97....0.6TGjuSOsw3A

cluster_cols = TRUE cutree_cols = NA annotation_col = NA

library(DESeq2)  #加载包

setwd("G:/Auxin")

library(DESeq2)

countData <- read.table("7",header = T, row.names = 1,quote = "")

countData <- ceiling (countData)

condition <- factor(c("MPV","AACC_1"))

colData <- data.frame(row.names=colnames(countData), condition)

dds <- DESeqDataSetFromMatrix(countData, DataFrame(condition), design= ~ condition )

dds2 <- DESeq(dds)

resultsNames(dds2)

res <- results(dds2)

table(res$padj<0.05) #取P值小于0.05的结果

res <- res[order(res$padj),]

diff_gene_deseq2 <-subset(res,padj < 0.1 & (log2FoldChange > 1 | log2FoldChange < -1))

diff_gene_deseq2 <- row.names(diff_gene_deseq2)

resdata <-  merge(as.data.frame(res),as.data.frame(counts(dds2,normalize=TRUE)),by="row.names",sort=FALSE)

write.csv(resdata,file= "G:/Auxin/mpv_vs_AACC_1.cvs",row.names = F)

countData <- read.table("22",header = T, row.names = 1,quote = "")

countData <- ceiling (countData)

condition <- factor(c("MPV","AACC_2"))

colData <- data.frame(row.names=colnames(countData), condition)

dds <- DESeqDataSetFromMatrix(countData, DataFrame(condition), design= ~ condition )

dds2 <- DESeq(dds)

resultsNames(dds2)

res <- results(dds2)

table(res$padj<0.05) #取P值小于0.05的结果

res <- res[order(res$padj),]

diff_gene_deseq2 <-subset(res,padj < 0.1 & (log2FoldChange > 1 | log2FoldChange < -1))

diff_gene_deseq2 <- row.names(diff_gene_deseq2)

resdata <-  merge(as.data.frame(res),as.data.frame(counts(dds2,normalize=TRUE)),by="row.names",sort=FALSE)

write.csv(resdata,file= "G:/Auxin/mpv_vs_AACC_2.cvs",row.names = F)

countData <- read.table("33",header = T, row.names = 1,quote = "")

countData <- ceiling (countData)

condition <- factor(c("MPV","AACC_3"))

colData <- data.frame(row.names=colnames(countData), condition)

dds <- DESeqDataSetFromMatrix(countData, DataFrame(condition), design= ~ condition )

dds2 <- DESeq(dds)

resultsNames(dds2)

res <- results(dds2)

table(res$padj<0.05) #取P值小于0.05的结果

res <- res[order(res$padj),]

diff_gene_deseq2 <-subset(res,padj < 0.1 & (log2FoldChange > 1 | log2FoldChange < -1))

diff_gene_deseq2 <- row.names(diff_gene_deseq2)

resdata <-  merge(as.data.frame(res),as.data.frame(counts(dds2,normalize=TRUE)),by="row.names",sort=FALSE)

write.csv(resdata,file= "G:/Auxin/mpv_vs_AACC_3.cvs",row.names = F)


countData <- read.table("66",header = T, row.names = 1,quote = "")


countData <- ceiling (countData)

condition <- factor(c("MPV","AACC_6"))

colData <- data.frame(row.names=colnames(countData), condition)

dds <- DESeqDataSetFromMatrix(countData, DataFrame(condition), design= ~ condition )

dds2 <- DESeq(dds)

resultsNames(dds2)

res <- results(dds2)

table(res$padj<0.05) #取P值小于0.05的结果

res <- res[order(res$padj),]

diff_gene_deseq2 <-subset(res,padj < 0.1 & (log2FoldChange > 1 | log2FoldChange < -1))

diff_gene_deseq2 <- row.names(diff_gene_deseq2)

resdata <-  merge(as.data.frame(res),as.data.frame(counts(dds2,normalize=TRUE)),by="row.names",sort=FALSE)

write.csv(resdata,file= "G:/Auxin/mpv_vs_AACC_6.cvs",row.names = F)

countData <- read.table("77",header = T, row.names = 1,quote = "")

countData <- ceiling (countData)

condition <- factor(c("MPV","AACC_7"))

colData <- data.frame(row.names=colnames(countData), condition)

dds <- DESeqDataSetFromMatrix(countData, DataFrame(condition), design= ~ condition )

dds2 <- DESeq(dds)

resultsNames(dds2)

res <- results(dds2)

table(res$padj<0.05) #取P值小于0.05的结果

res <- res[order(res$padj),]

diff_gene_deseq2 <-subset(res,padj < 0.1 & (log2FoldChange > 1 | log2FoldChange < -1))

diff_gene_deseq2 <- row.names(diff_gene_deseq2)

resdata <-  merge(as.data.frame(res),as.data.frame(counts(dds2,normalize=TRUE)),by="row.names",sort=FALSE)

write.csv(resdata,file= "G:/Auxin/mpv_vs_AACC_7.cvs",row.names = F)

countData <- read.table("12345.csv",header = T, row.names = 1,quote = "")

countData <- ceiling (countData)

condition <- factor(c("MPV","MPV","MPV","AACC_1","AACC_1","AACC_1"))

colData <- data.frame(row.names=colnames(countData), condition)

dds <- DESeqDataSetFromMatrix(countData, DataFrame(condition), design= ~ condition )

dds2 <- DESeq(dds)

resultsNames(dds2)

res <- results(dds2)

table(res$padj<0.05) #取P值小于0.05的结果

res <- res[order(res$padj),]

diff_gene_deseq2 <-subset(res,padj < 0.01 & (log2FoldChange > 1 | log2FoldChange < -1))

diff_gene_deseq2 <- row.names(diff_gene_deseq2)

resdata <-  merge(as.data.frame(res),as.data.frame(counts(dds2,normalize=TRUE)),by="row.names",sort=FALSE)

write.csv(resdata,file= "G:/Auxin/mpv_vs_AACC_1.cvs",row.names = F)

countData <- read.table("22",header = T, row.names = 1,quote = "")

countData <- ceiling (countData)

condition <- factor(c("MPV","MPV","MPV","AACC_2","AACC_2","AACC_2"))

colData <- data.frame(row.names=colnames(countData), condition)

dds <- DESeqDataSetFromMatrix(countData, DataFrame(condition), design= ~ condition )

dds2 <- DESeq(dds)

resultsNames(dds2)

res <- results(dds2)

table(res$padj<0.05) #取P值小于0.05的结果

res <- res[order(res$padj),]

diff_gene_deseq2 <-subset(res,padj < 0.01 & (log2FoldChange > 1 | log2FoldChange < -1))

diff_gene_deseq2 <- row.names(diff_gene_deseq2)

resdata <-  merge(as.data.frame(res),as.data.frame(counts(dds2,normalize=TRUE)),by="row.names",sort=FALSE)

write.csv(resdata,file= "G:/Auxin/mpv_vs_AACC_2.cvs",row.names = F)

countData <- read.table("33.csv",header = T, row.names = 1,quote = "")

countData <- ceiling (countData)

condition <- factor(c("MPV","MPV","MPV","AACC_3","AACC_3","AACC_3"))

colData <- data.frame(row.names=colnames(countData), condition)

dds <- DESeqDataSetFromMatrix(countData, DataFrame(condition), design= ~ condition )

dds2 <- DESeq(dds)

resultsNames(dds2)

res <- results(dds2)

table(res$padj<0.05) #取P值小于0.05的结果

res <- res[order(res$padj),]

diff_gene_deseq2 <-subset(res,padj < 0.01 & (log2FoldChange > 1 | log2FoldChange < -1))

diff_gene_deseq2 <- row.names(diff_gene_deseq2)

resdata <-  merge(as.data.frame(res),as.data.frame(counts(dds2,normalize=TRUE)),by="row.names",sort=FALSE)

write.csv(resdata,file= "G:/Auxin/mpv_vs_AACC_3.cvs",row.names = F)

countData <- read.table("55.csv",header = T, row.names = 1,quote = "")

countData <- ceiling (countData)

condition <- factor(c("MPV","MPV","MPV","AACC_5","AACC_5","AACC_5"))

colData <- data.frame(row.names=colnames(countData), condition)

dds <- DESeqDataSetFromMatrix(countData, DataFrame(condition), design= ~ condition )

dds2 <- DESeq(dds)

resultsNames(dds2)

res <- results(dds2)

table(res$padj<0.05) #取P值小于0.05的结果

res <- res[order(res$padj),]

diff_gene_deseq2 <-subset(res,padj < 0.01 & (log2FoldChange > 1 | log2FoldChange < -1))

diff_gene_deseq2 <- row.names(diff_gene_deseq2)

resdata <-  merge(as.data.frame(res),as.data.frame(counts(dds2,normalize=TRUE)),by="row.names",sort=FALSE)

write.csv(resdata,file= "G:/Auxin/mpv_vs_AACC_5.cvs",row.names = F)

countData <- read.table("66.csv",header = T, row.names = 1,quote = "")

countData <- ceiling (countData)

condition <- factor(c("MPV","MPV","MPV","AACC_6","AACC_6","AACC_6"))

colData <- data.frame(row.names=colnames(countData), condition)

dds <- DESeqDataSetFromMatrix(countData, DataFrame(condition), design= ~ condition )

dds2 <- DESeq(dds)

resultsNames(dds2)

res <- results(dds2)

table(res$padj<0.05) #取P值小于0.05的结果

res <- res[order(res$padj),]

diff_gene_deseq2 <-subset(res,padj < 0.01 & (log2FoldChange > 1 | log2FoldChange < -1))

diff_gene_deseq2 <- row.names(diff_gene_deseq2)

resdata <-  merge(as.data.frame(res),as.data.frame(counts(dds2,normalize=TRUE)),by="row.names",sort=FALSE)

write.csv(resdata,file= "G:/Auxin/mpv_vs_AACC_6.cvs",row.names = F)

countData <- read.table("77",header = T, row.names = 1,quote = "")

countData <- ceiling (countData)

condition <- factor(c("MPV","MPV","MPV","AACC_7","AACC_7","AACC_7"))

colData <- data.frame(row.names=colnames(countData), condition)

dds <- DESeqDataSetFromMatrix(countData, DataFrame(condition), design= ~ condition )

dds2 <- DESeq(dds)

resultsNames(dds2)

res <- results(dds2)

table(res$padj<0.05) #取P值小于0.05的结果

res <- res[order(res$padj),]

diff_gene_deseq2 <-subset(res,padj < 0.01 & (log2FoldChange > 1 | log2FoldChange < -1))

diff_gene_deseq2 <- row.names(diff_gene_deseq2)

resdata <-  merge(as.data.frame(res),as.data.frame(counts(dds2,normalize=TRUE)),by="row.names",sort=FALSE)

write.csv(resdata,file= "G:/Auxin/mpv_vs_AACC_7.cvs",row.names = F)

countData <- read.table("88",header = T, row.names = 1,quote = "")

countData <- ceiling (countData)

condition <- factor(c("MPV","MPV","MPV","AACC_8","AACC_8","AACC_8"))

colData <- data.frame(row.names=colnames(countData), condition)

dds <- DESeqDataSetFromMatrix(countData, DataFrame(condition), design= ~ condition )

dds2 <- DESeq(dds)

resultsNames(dds2)

res <- results(dds2)

table(res$padj<0.05) #取P值小于0.05的结果

res <- res[order(res$padj),]

diff_gene_deseq2 <-subset(res,padj < 0.01 & (log2FoldChange > 1 | log2FoldChange < -1))

diff_gene_deseq2 <- row.names(diff_gene_deseq2)

resdata <-  merge(as.data.frame(res),as.data.frame(counts(dds2,normalize=TRUE)),by="row.names",sort=FALSE)

write.csv(resdata,file= "G:/Auxin/mpv_vs_AACC_8.cvs",row.names = F)

library(pheatmap)

data<- read.csv("outfile000.csv",header = T, row.names = 1,quote = "")

pheatmap::pheatmap(data,cluster_rows =FALSE,

                  cluster_cols = FALSE)


?pheatmap

setwd("G:/restance")

countData <- read.csv("AACC_1.CSV",header = T, row.names = 1,quote = "")

countData <- ceiling (countData)

condition <- factor(c("MPV","MPV","MPV","AACC_1","AACC_1","AACC_1"))

colData <- data.frame(row.names=colnames(countData), condition)

dds <- DESeqDataSetFromMatrix(countData, DataFrame(condition), design= ~ condition )

dds2 <- DESeq(dds)

resultsNames(dds2)

res <- results(dds2)

table(res$padj<0.05) #取P值小于0.05的结果

res <- res[order(res$padj),]

diff_gene_deseq2 <-subset(res,padj < 0.01 & (log2FoldChange > 1 | log2FoldChange < -1))

diff_gene_deseq2 <- row.names(diff_gene_deseq2)

resdata <-  merge(as.data.frame(res),as.data.frame(counts(dds2,normalize=TRUE)),by="row.names",sort=FALSE)

write.csv(resdata,file= "G:/Auxin/mpv_vs_AACC_1.cvs",row.names = F)

countData <- read.csv("AACC_2.CSV",header = T, row.names = 1,quote = "")

countData <- ceiling (countData)

condition <- factor(c("MPV","MPV","MPV","AACC_2","AACC_2","AACC_2"))

colData <- data.frame(row.names=colnames(countData), condition)

dds <- DESeqDataSetFromMatrix(countData, DataFrame(condition), design= ~ condition )

dds2 <- DESeq(dds)

resultsNames(dds2)

res <- results(dds2)

table(res$padj<0.05) #取P值小于0.05的结果

res <- res[order(res$padj),]

diff_gene_deseq2 <-subset(res,padj < 0.01 & (log2FoldChange > 1 | log2FoldChange < -1))

diff_gene_deseq2 <- row.names(diff_gene_deseq2)

resdata <-  merge(as.data.frame(res),as.data.frame(counts(dds2,normalize=TRUE)),by="row.names",sort=FALSE)

write.csv(resdata,file= "G:/Auxin/mpv_vs_AACC_2.cvs",row.names = F)

countData <- read.csv("AACC_3.CSV",header = T, row.names = 1,quote = "")

countData <- ceiling (countData)

condition <- factor(c("MPV","MPV","MPV","AACC_3","AACC_3","AACC_3"))

colData <- data.frame(row.names=colnames(countData), condition)

dds <- DESeqDataSetFromMatrix(countData, DataFrame(condition), design= ~ condition )

dds2 <- DESeq(dds)

resultsNames(dds2)

res <- results(dds2)

table(res$padj<0.05) #取P值小于0.05的结果

res <- res[order(res$padj),]

diff_gene_deseq2 <-subset(res,padj < 0.01 & (log2FoldChange > 1 | log2FoldChange < -1))

diff_gene_deseq2 <- row.names(diff_gene_deseq2)

resdata <-  merge(as.data.frame(res),as.data.frame(counts(dds2,normalize=TRUE)),by="row.names",sort=FALSE)

write.csv(resdata,file= "G:/Auxin/mpv_vs_AACC_3.cvs",row.names = F)

countData <- read.csv("AACC_4.CSV",header = T, row.names = 1,quote = "")

countData <- ceiling (countData)

condition <- factor(c("MPV","MPV","MPV","AACC_4","AACC_4","AACC_4"))

colData <- data.frame(row.names=colnames(countData), condition)

dds <- DESeqDataSetFromMatrix(countData, DataFrame(condition), design= ~ condition )

dds2 <- DESeq(dds)

resultsNames(dds2)

res <- results(dds2)

table(res$padj<0.05) #取P值小于0.05的结果

res <- res[order(res$padj),]

diff_gene_deseq2 <-subset(res,padj < 0.01 & (log2FoldChange > 1 | log2FoldChange < -1))

diff_gene_deseq2 <- row.names(diff_gene_deseq2)

resdata <-  merge(as.data.frame(res),as.data.frame(counts(dds2,normalize=TRUE)),by="row.names",sort=FALSE)

write.csv(resdata,file= "G:/Auxin/mpv_vs_AACC_4.cvs",row.names = F)

countData <- read.csv("AACC_5.CSV",header = T, row.names = 1,quote = "")

countData <- ceiling (countData)

condition <- factor(c("MPV","MPV","MPV","AACC_5","AACC_5","AACC_5"))

colData <- data.frame(row.names=colnames(countData), condition)

dds <- DESeqDataSetFromMatrix(countData, DataFrame(condition), design= ~ condition )

dds2 <- DESeq(dds)

resultsNames(dds2)

res <- results(dds2)

table(res$padj<0.05) #取P值小于0.05的结果

res <- res[order(res$padj),]

diff_gene_deseq2 <-subset(res,padj < 0.01 & (log2FoldChange > 1 | log2FoldChange < -1))

diff_gene_deseq2 <- row.names(diff_gene_deseq2)

resdata <-  merge(as.data.frame(res),as.data.frame(counts(dds2,normalize=TRUE)),by="row.names",sort=FALSE)

write.csv(resdata,file= "G:/Auxin/mpv_vs_AACC_5.cvs",row.names = F)

countData <- read.csv("AACC_6.CSV",header = T, row.names = 1,quote = "")

countData <- ceiling (countData)

condition <- factor(c("MPV","MPV","MPV","AACC_6","AACC_6","AACC_6"))

colData <- data.frame(row.names=colnames(countData), condition)

dds <- DESeqDataSetFromMatrix(countData, DataFrame(condition), design= ~ condition )

dds2 <- DESeq(dds)

resultsNames(dds2)

res <- results(dds2)

table(res$padj<0.05) #取P值小于0.05的结果

res <- res[order(res$padj),]

diff_gene_deseq2 <-subset(res,padj < 0.01 & (log2FoldChange > 1 | log2FoldChange < -1))

diff_gene_deseq2 <- row.names(diff_gene_deseq2)

resdata <-  merge(as.data.frame(res),as.data.frame(counts(dds2,normalize=TRUE)),by="row.names",sort=FALSE)

write.csv(resdata,file= "G:/Auxin/mpv_vs_AACC_6.cvs",row.names = F)

countData <- read.csv("AACC_7.CSV",header = T, row.names = 1,quote = "")

countData <- ceiling (countData)

condition <- factor(c("MPV","MPV","MPV","AACC_7","AACC_7","AACC_7"))

colData <- data.frame(row.names=colnames(countData), condition)

dds <- DESeqDataSetFromMatrix(countData, DataFrame(condition), design= ~ condition )

dds2 <- DESeq(dds)

resultsNames(dds2)

res <- results(dds2)

table(res$padj<0.05) #取P值小于0.05的结果

res <- res[order(res$padj),]

diff_gene_deseq2 <-subset(res,padj < 0.01 & (log2FoldChange > 1 | log2FoldChange < -1))

diff_gene_deseq2 <- row.names(diff_gene_deseq2)

resdata <-  merge(as.data.frame(res),as.data.frame(counts(dds2,normalize=TRUE)),by="row.names",sort=FALSE)

write.csv(resdata,file= "G:/Auxin/mpv_vs_AACC_7.cvs",row.names = F)

countData <- read.csv("AACC_1.CSV",header = T, row.names = 1,quote = "")

countData <- ceiling (countData)

condition <- factor(c("MPV","MPV","MPV","AACC_1","AACC_1","AACC_1"))

colData <- data.frame(row.names=colnames(countData), condition)

dds <- DESeqDataSetFromMatrix(countData, DataFrame(condition), design= ~ condition )

dds2 <- DESeq(dds)

resultsNames(dds2)

res <- results(dds2)

table(res$padj<0.05) #取P值小于0.05的结果

res <- res[order(res$padj),]

diff_gene_deseq2 <-subset(res,padj < 0.01 & (log2FoldChange > 1 | log2FoldChange < -1))

diff_gene_deseq2 <- row.names(diff_gene_deseq2)

resdata <-  merge(as.data.frame(res),as.data.frame(counts(dds2,normalize=TRUE)),by="row.names",sort=FALSE)

write.csv(resdata,file= "G:/restance/mpv_vs_AACC_1.cvs",row.names = F)

countData <- read.csv("AACC_5.CSV",header = T, row.names = 1,quote = "")

countData <- ceiling (countData)

condition <- factor(c("MPV","MPV","MPV","AACC_5","AACC_5","AACC_5"))

colData <- data.frame(row.names=colnames(countData), condition)

dds <- DESeqDataSetFromMatrix(countData, DataFrame(condition), design= ~ condition )

dds2 <- DESeq(dds)

resultsNames(dds2)

res <- results(dds2)

table(res$padj<0.05) #取P值小于0.05的结果

res <- res[order(res$padj),]

diff_gene_deseq2 <-subset(res,padj < 0.01 & (log2FoldChange > 1 | log2FoldChange < -1))

diff_gene_deseq2 <- row.names(diff_gene_deseq2)

resdata <-  merge(as.data.frame(res),as.data.frame(counts(dds2,normalize=TRUE)),by="row.names",sort=FALSE)

write.csv(resdata,file= "G:/restance/mpv_vs_AACC_5.cvs",row.names = F)

countData <- read.csv("AACC_7.CSV",header = T, row.names = 1,quote = "")

countData <- ceiling (countData)

condition <- factor(c("MPV","MPV","MPV","AACC_7","AACC_7","AACC_7"))

colData <- data.frame(row.names=colnames(countData), condition)

dds <- DESeqDataSetFromMatrix(countData, DataFrame(condition), design= ~ condition )

dds2 <- DESeq(dds)

resultsNames(dds2)

res <- results(dds2)

table(res$padj<0.05) #取P值小于0.05的结果

res <- res[order(res$padj),]

diff_gene_deseq2 <-subset(res,padj < 0.01 & (log2FoldChange > 1 | log2FoldChange < -1))

diff_gene_deseq2 <- row.names(diff_gene_deseq2)

resdata <-  merge(as.data.frame(res),as.data.frame(counts(dds2,normalize=TRUE)),by="row.names",sort=FALSE)

write.csv(resdata,file= "G:/restance/mpv_vs_AACC_7.cvs",row.names = F)

countData <- read.csv("AACC_8.CSV",header = T, row.names = 1,quote = "")

countData <- ceiling (countData)

condition <- factor(c("MPV","MPV","MPV","AACC_8","AACC_8","AACC_8"))

colData <- data.frame(row.names=colnames(countData), condition)

dds <- DESeqDataSetFromMatrix(countData, DataFrame(condition), design= ~ condition )

dds2 <- DESeq(dds)

resultsNames(dds2)

res <- results(dds2)

table(res$padj<0.05) #取P值小于0.05的结果

res <- res[order(res$padj),]

diff_gene_deseq2 <-subset(res,padj < 0.01 & (log2FoldChange > 1 | log2FoldChange < -1))

diff_gene_deseq2 <- row.names(diff_gene_deseq2)

resdata <-  merge(as.data.frame(res),as.data.frame(counts(dds2,normalize=TRUE)),by="row.names",sort=FALSE)

write.csv(resdata,file= "G:/restance/mpv_vs_AACC_8.cvs",row.names = F)

library(pheatmap)

data<- read.csv("outfile_last.csv",header = T, row.names = 1,quote = "")

pheatmap::pheatmap(data,cluster_rows = FALSE,cluster_cols = FALSE)

setwd("G:/glugene")

library(pheatmap)

data<- read.csv("outfilelast.csv",header = T, row.names = 1,quote = "")

pheatmap::pheatmap(data,cluster_rows = FALSE,cluster_cols = FALSE)

setwd("G:/Auxin")

data<- read.csv("outfile000.csv",header = T, row.names = 1,quote = "")

pheatmap::pheatmap(data,cluster_rows = FALSE,cluster_cols = FALSE)

setwd("G:/restance")

data<- read.csv("outfile_last.csv",header = T, row.names = 1,quote = "")

pheatmap::pheatmap(data,cluster_rows = FALSE,cluster_cols = FALSE)

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,684评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,143评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,214评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,788评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,796评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,665评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,027评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,679评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 41,346评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,664评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,766评论 1 331
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,412评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,015评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,974评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,203评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,073评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,501评论 2 343

推荐阅读更多精彩内容

  • 1.getwd setwd2.rm(list=ls())3.ESC停止运行3.n() n_distinct() ...
    琼脂糖阅读 1,753评论 0 0
  • 一、读文章获取下载数据 1、读文章 一般我都从NCBI上面下载文章,找到数据号 2、下载数据 进入NCBI的GEO...
    黄思源_3a22阅读 6,141评论 0 2
  • http://blog.sina.com.cn/s/blog_6bc5205e0102vma9.html inst...
    付德刚Q阅读 3,022评论 0 3
  • 今天醒来煮好早餐后便立马给伟瀚妈妈电话告诉她我已经好很多了,而且我直接跟她说我想吃番薯,家里能否带些过来,后来我给...
    蘭Zena阅读 128评论 0 0
  • 也想过当科学家 也想过拯救世界 也想过永不回家 在春天的原野上打闹 在夏天的蝉鸣中玩水 在秋天的麦垛里躲藏 在冬天...
    子慨阅读 279评论 0 4