树状数组图文解析

树状数组是一个查询和修改复杂度都为log(n)的数据结构。主要用于数组的单点修改、区间求和。

lowbit数组

lowbit[x] 等于 x 这个数的二进制表示下最低位 1 所对应的十进制数值。(x 默认为非负)
例如:lowbit[44] = lowbit[(101100)2] = (100)2 = 4

  • 计算
    那么怎么计算呢,当我们对lowbit[x]进行二进制计算时,可以发现 x & (~x + 1) (~:取反)的计算结果即为lowbit[x]。
    又已知计算机采用的是补码,非负数的补码是其原码本身,负数补码为除最高位外每位取反再加 1。那么 (~x + 1)= -n成立,则lowbit[x] = x & (~x + 1) = n & (-n)

树状数组思想

单点修改,区间查询

如下图,横坐标是 x,纵坐标是对应的 lowbit[x]。其形状像一棵二叉树,当我们连接起来父子节点(绿线)时,可以发现,求左孩子的父节点对应的 x 时,可以利用公式 x + lowbit[x],如 x=5 的父节点是 x+lowbit[5]=6 即 x=6 是其父节点。同理右孩子的父节点是 x - lowbit[x]

接下来引入一个辅助数组c[i],c[x] 值为下标是 i=x-lowbit[x]+1 递增到 x 的 a[i] 的和(a 为原数组,为便于理解本文图中 x 轴的值为 a[x],即 a[1] = 1、a[2] = 2等 )
那么直观表示就是如下图所示蓝色区域覆盖的地方:

由此可发现当每次修改 x 对应位置的值时,需要同时修改被其他(蓝色)区域覆盖的 c 数组的值,通过观察可以发现,需要修改的那些区域就是 x 的所有直接/间接父节点,且 x 是那个父节点的左孩子,而求其父节点的公式上述已知:x + lowbit[x]。
所以单点更新的方法就是:从要更新的那个位置 i=x 开始循环,使 c[i] 数组更新其值,然后 i+=lowbit[i],直到 i 更新到数组最大值即可。

同时我们可以发现,当查询前缀和时,每个位置对应的 c 数组值(蓝色区域)开始点所反映的直观表示是在它的上面 且 位于前面的某数(当前数减去其 lowbit 的值)的蓝色区域结束点,那么将它们首尾相连所得的 c 数组(蓝色区域)的和,即为当前位置的前缀和。而每个位置 x 的蓝色位置的值即为 x - lowbit[x]。
所有求区间和的方法是:从 i=x 开始,令一个初始化为0的变量sum逐个记录 c 数组(蓝色区域)的值,然后 i = i - lowbit[i] 循环,直到 i 到达0为之结束循环。最后sum的值就是 x 对应的前缀和,两前缀和相减即为对应的区间和。

区间修改,单点查询

定义一个查分数组 d,即d[i]=a[i]-a[i-1]。那么看如下图所示:


当区间2--4加 1后,差分数组只改变了第2个位置和第5个位置(蓝色字体值没变),观察又可发现2位置加了1,而5位置减了1(根据差分数组的计算性质可以解释)。那么可以利用这点来达到区间修改的等价,且服务于后面的单点查询。请接着往下看

下面我们计算差分数组的前缀和:d[i]=(a[i]-a[i-1]) + (a[i-1]-a[i-2]) + ... + (a[3]-a[2]) + (a[2]-a[1]) + a[1] = a[i],则计算差分数组的前缀合就等于原给定序列的单点查询。因此用差分数组解决了区间修改和单点查询问题。

区间修改,区间查询

由于差分数组的前缀和是原数组的值,那么差分数组前缀和的前缀和是原数组的前缀和
每次计算差分数组前缀和的前缀和,那么每个差分数组的值被加的次数是有规律的,即d[1]被加次数最多,一共被加了x次(假设一共有x个数据),那么接下来的d[2]被加了x-1次,以此类推,那么原数组的前缀和为差分数组所有项被加的总和,即 d[i]×(x-i+1) (i从1到x)。然后做以下变化:


s1[i] 维护 d[i] 的前缀和;
s2[i] 维护 d[i]×i 的前缀和。
......
其他方法:采用线段树可以处理复杂的区间操作。

代码示例

单点修改,区间查询

import java.util.Scanner;

/**
 * 单点修改,区间查询
 */
public class TreeArray1 {
    static int n, m;
    static int[] sum = null;

    static int lowbit(int x){
        return x & (-x);
    }

    static void add(int x, int c) {
        while (x <= n){
            sum[x] += c;
            x += lowbit(x);
        }
    }

    static int query(int x){
        int ans = 0;
        while (x > 0){
            ans += sum[x];
            x -= lowbit(x);
        }
        return ans;
    }

    public static void main(String[] args) {
        Scanner cin = new Scanner(System.in);
        n = cin.nextInt();
        m = cin.nextInt();
        sum = new int[n+5];

        for (int i=1; i<=n; i++){
            int t = cin.nextInt();
            add(i, t);
        }


        for (int i=0; i<m; i++){
            int opt = cin.nextInt();
            int x = cin.nextInt();
            int y = cin.nextInt();

            if (opt == 1){  //单点修改

                add(x, y);

            }else if (opt == 2){    //区间查询

                int ans = query(y) - query(x-1);
                System.out.println(ans);

            }
        }
    }
}

区间修改,单点查询

import java.util.Scanner;

/**
 * 区间修改,单点查询
 */
public class TreeArray2 {
    static int n, m;
    static int[] sum = null;

    static int lowbit(int x){
        return x & (-x);
    }

    static void add(int x, int c) {
        while (x <= n){
            sum[x] += c;
            x += lowbit(x);
        }
    }

    static int query(int x){
        int ans = 0;
        while (x > 0){
            ans += sum[x];
            x -= lowbit(x);
        }
        return ans;
    }

    public static void main(String[] args) {
        Scanner cin = new Scanner(System.in);
        n = cin.nextInt();
        m = cin.nextInt();
        sum = new int[n+5];
        int[] a = new int[n+5];

        for (int i=1; i<=n; i++) a[i] = cin.nextInt();

        int[] d = new int[n+5];
        for (int i=1; i<=n; i++){
            d[i] = a[i] - a[i-1];
            add(i, d[i]);
        }

        for (int i=0; i<m; i++){
            int opt = cin.nextInt();

            if (opt == 1){  //区间修改

                int l = cin.nextInt();
                int r = cin.nextInt();
                int c = cin.nextInt();
                add(l, c);
                add(r+1, -c);

            }else if (opt == 2){    //单点查询

                int x = cin.nextInt();
                System.out.println(query(x));

            }
        }
    }
}

参考:
完全理解并深入应用树状数组 | 支持多种动态维护区间操作
数据结构专题之树状数组入门

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,445评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,889评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,047评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,760评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,745评论 5 367
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,638评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,011评论 3 398
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,669评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,923评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,655评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,740评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,406评论 4 320
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,995评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,961评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,197评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,023评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,483评论 2 342

推荐阅读更多精彩内容