1. 借鉴
使用Docker在本地搭建Flink分布式集群
基于docker构建flink大数据处理平台
Flink集群搭建
Hadoop 集成
flink学习笔记-环境搭建篇
Apache Flink零基础入门(一):基础概念解析
Flink on YARN的第三种部署模式:Application Mode
Flink 系列(八)—— Flink Standalone 集群部署
2. 开始
我们的集群规划如下:
flink01[172.173.16.23] | flink02[172.173.16.24] | flink03[172.173.16.25] | |
---|---|---|---|
JOB MANAGER | Master | Slave | Slave |
HDFS | DataNode | DataNode | DataNode |
YARN | NodeManager | NodeManager | NodeManager |
PORT | 8086 | 22 | 22 |
同时需要依赖hadoop集群,所以也一起列出来
hadoop01[172.173.16.10] | hadoop02[172.173.16.11] | hadoop03[172.173.16.12] | |
---|---|---|---|
HDFS | NameNode DataNode |
DataNode | SecondaryNameNode DataNode |
YARN | NodeManager | ResourceManager NodeManager |
NodeManager |
PORT | 22,9000,50070 | 22 | 22 |
镜像准备
on yarn模式是依托于hadoop的,所以flink机器上需要hadoop环境
方式 1. docker hub 下载
docker pull caiserkaiser/hadoop:2.7.2
方式 2. 构建
caiser/hadoop:2.7.2 镜像
创建自定义网络
docker network create -d bridge --subnet "172.173.16.0/24" --gateway "172.173.16.1" datastore_net
启动容器
docker run -it -d --network datastore_net --ip 172.173.16.23 --name flink01 caiser/hadoop:2.7.2
下载并配置flink
-
拷贝到容器内
docker cp ~/Downloads/flink-1.10.2-bin-scala_2.12.tgz ccd2b9cb65a5:/opt/envs
-
解压
tar -zxvf flink-1.10.2-bin-scala_2.12.tgz
-
配置hadoop环境
①. vi /etc/profile
②. 配置 HADOOP_HOME
export HADOOP_HOME=/opt/envs/hadoop-2.7.2 export HADOOP_CONF_DIR=$HADOOP_HOME/etc/hadoop
③. soure /etc/profile
-
修改masters文件
- a. 备份
cp /opt/envs/flink-1.10.2/conf/masters /opt/envs/flink-1.10.2/conf/masters.bak
- b. 修改为
flink01:8081
-
修改slaves文件
- a. 备份
cp /opt/envs/flink-1.10.2/conf/slaves /opt/envs/flink-1.10.2/conf/slaves.bak
- b. 修改为
flink01 flink02 flink03
-
配置flink-shaded-hadoop
docker cp ~/Downloads/flink-shaded-hadoop-2-uber-2.7.5-10.0.jar ccd2b9cb65a5:/opt/envs/flink-1.10.2/lib
-
修改flink-conf.yaml配置文件
- a. 备份
cp /opt/envs/flink-1.10.2/conf/flink-conf.yaml /opt/envs/flink-1.10.2/conf/flink-conf.yaml.bak
- b. 设置如下:
jobmanager.rpc.address: flink01 taskmanager.memory.process.size: 1024m rest.bind-port: 8086 web.submit.enable: true
flink-节点配置
编辑/etc/hosts,并添加以下hostname
172.173.16.23 flink01
172.173.16.24 flink02
172.173.16.25 flink03
安装which
yum install which
保存为镜像并移除容器
docker commit ccd2b9cb65a5 caiser/flink:1.10.2
docker stop ccd2b9cb65a5
docker rm ccd2b9cb65a5
启动容器
docker run -it -d --network datastore_net --ip 172.173.16.23 --name flink01 caiser/flink:1.10.2 bin/bash
docker run -it -d --network datastore_net --ip 172.173.16.24 --name flink02 caiser/flink:1.10.2 bin/bash
docker run -it -d --network datastore_net --ip 172.173.16.25 --name flink03 caiser/flink:1.10.2 bin/bash
配置ssh免密登录
-
进入容器
docker exec -it flink01 /bin/bash
-
到~/.ssh目录下生成秘钥
ssh-keygen -t rsa
-
拷贝秘钥到flink01,flink02和flink03
a.[如果没开启]开启ssh服务[ps -ef | grep ssh]
/usr/sbin/sshd -D &
b. 拷贝秘钥到flink01,flink02,flink03
ssh-copy-id flink01 ssh-copy-id flink02 ssh-copy-id flink03
flink02和flink03依次执行上述1-3步骤
启动(ON YARN)
第一步:向hadoop集群中添加节点
① 在flink01机器的hadoop/sbin目录下启动datanode:
hadoop-daemon.sh start datanode
② 在flink01机器的hadoop/sbin目录下启动nodemanager
yarn-daemon.sh start nodemanager
③ jps查看datanode和nodemanager是否已启动
④ 在flink02和flink03上重复以上操作
⑤ 回到namenode节点打印集群信息,或网页登录50070端口查看节点数量
hdfs dfsadmin -report
第二步:执行yarn-session
在flink01 flink/bin中执行
./yarn-session.sh -n 3 -s 1-jm 1024 -tm 1024
看到以下内容则说明启动成功
ps. 也可以后台运行./yarn-session.sh -n 3 -s 1-jm 1024 -tm 1024 -d
[root@3b5491eb3eb9 bin]# ./yarn-session.sh -n 3 -s 1-jm 1024 -tm 1024
2020-11-21 16:43:12,787 INFO org.apache.flink.configuration.GlobalConfiguration - Loading configuration property: jobmanager.rpc.address, flink01
2020-11-21 16:43:12,791 INFO org.apache.flink.configuration.GlobalConfiguration - Loading configuration property: jobmanager.rpc.port, 6123
2020-11-21 16:43:12,791 INFO org.apache.flink.configuration.GlobalConfiguration - Loading configuration property: jobmanager.heap.size, 1024m
2020-11-21 16:43:12,792 INFO org.apache.flink.configuration.GlobalConfiguration - Loading configuration property: taskmanager.memory.process.size, 1024m
2020-11-21 16:43:12,792 INFO org.apache.flink.configuration.GlobalConfiguration - Loading configuration property: taskmanager.numberOfTaskSlots, 1
2020-11-21 16:43:12,792 INFO org.apache.flink.configuration.GlobalConfiguration - Loading configuration property: parallelism.default, 1
2020-11-21 16:43:12,793 INFO org.apache.flink.configuration.GlobalConfiguration - Loading configuration property: jobmanager.execution.failover-strategy, region
2020-11-21 16:43:12,793 INFO org.apache.flink.configuration.GlobalConfiguration - Loading configuration property: rest.bind-port, 8086
2020-11-21 16:43:12,794 INFO org.apache.flink.configuration.GlobalConfiguration - Loading configuration property: web.submit.enable, true
2020-11-21 16:43:13,592 WARN org.apache.hadoop.util.NativeCodeLoader - Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
2020-11-21 16:43:13,783 INFO org.apache.flink.runtime.security.modules.HadoopModule - Hadoop user set to root (auth:SIMPLE)
2020-11-21 16:43:13,872 INFO org.apache.flink.runtime.security.modules.JaasModule - Jaas file will be created as /tmp/jaas-3674228881056681551.conf.
2020-11-21 16:43:13,893 WARN org.apache.flink.yarn.cli.FlinkYarnSessionCli - The configuration directory ('/opt/envs/flink-1.10.2/conf') already contains a LOG4J config file.If you want to use logback, then please delete or rename the log configuration file.
2020-11-21 16:43:14,012 INFO org.apache.hadoop.yarn.client.RMProxy - Connecting to ResourceManager at hadoop02/172.173.16.11:8032
2020-11-21 16:43:14,375 INFO org.apache.flink.runtime.clusterframework.TaskExecutorProcessUtils - The derived from fraction jvm overhead memory (102.400mb (107374184 bytes)) is less than its min value 192.000mb (201326592 bytes), min value will be used instead
2020-11-21 16:43:14,376 INFO org.apache.flink.runtime.clusterframework.TaskExecutorProcessUtils - The derived from fraction network memory (57.600mb (60397978 bytes)) is less than its min value 64.000mb (67108864 bytes), min value will be used instead
2020-11-21 16:43:14,609 INFO org.apache.flink.yarn.YarnClusterDescriptor - Cluster specification: ClusterSpecification{masterMemoryMB=1024, taskManagerMemoryMB=1024, slotsPerTaskManager=1}
2020-11-21 16:43:17,126 INFO org.apache.flink.yarn.YarnClusterDescriptor - Submitting application master application_1605959782595_0008
2020-11-21 16:43:17,179 INFO org.apache.hadoop.yarn.client.api.impl.YarnClientImpl - Submitted application application_1605959782595_0008
2020-11-21 16:43:17,180 INFO org.apache.flink.yarn.YarnClusterDescriptor - Waiting for the cluster to be allocated
2020-11-21 16:43:17,182 INFO org.apache.flink.yarn.YarnClusterDescriptor - Deploying cluster, current state ACCEPTED
2020-11-21 16:43:24,733 INFO org.apache.flink.yarn.YarnClusterDescriptor - YARN application has been deployed successfully.
2020-11-21 16:43:24,739 INFO org.apache.flink.yarn.YarnClusterDescriptor - Found Web Interface 8f4fdb3626d6:8086 of application 'application_1605959782595_0008'.
JobManager Web Interface: http://8f4fdb3626d6:8086
注:在这种模式下,WEB UI的host是会变的,所以开发还是使用单机或者单机集群模式。
启动(STANDALONE CLUSTER)
第一步:执行start-cluster
在任意一台机器上的 flink/bin中执行
./start-cluster.sh
接着访问8081(默认端口)或者8086(本文配置端口)就可以访问了
注:需要做端口映射
动态添加端口
"ExposedPorts":{"8086/tcp":{}}
"PortBindings":{"8086/tcp":[{"HostIp":"","HostPort":"8086"}]}