前言
相信大家对本文的主角block
都有一定的了解,日常开发中也经常能看到它的身影。本文会从block概念
、blcok循环引用
、block底层
三方面进行讲解
一、初识block
1.block定义
带有自动变量(局部变量)的匿名函数叫做block
,又叫做匿名函数
、代码块
在不同语言中的叫法不同
程序语言 | Block的名称 |
---|---|
C | Block |
Smalltalk | Block |
Ruby | Block |
Python | Lambda |
C++ | Lambda |
JS | Anonymous function |
2.block分类
- 全局block——
__NSGlobalBlock__
void (^block)(void) = ^{
NSLog(@"111");
};
NSLog(@"%@", block);
--------------------输出结果:-------------------
<__NSGlobalBlock__: 0x10a870050>
--------------------输出结果:-------------------
复制代码
- 堆block——
__NSMallocBlock__
int a = 0;
void (^block)(void) = ^{
NSLog(@"%d", a);
};
NSLog(@"%@", block);
--------------------输出结果:-------------------
<__NSMallocBlock__: 0x600002dca2b0>
--------------------输出结果:-------------------
复制代码
- 栈block——
__NSStackBlock__
int a = 0;
NSLog(@"%@", ^{
NSLog(@"%d", a);
});
--------------------输出结果:-------------------
<__NSStackBlock__: 0x7ffeec41e1b8>
--------------------输出结果:-------------------
复制代码
总结:
- 不使用外界变量的block是
__NSGlobalBlock__
类型 - 使用外界变量的block是
__NSMallocBlock__
类型 - 在堆block拷贝前的block是
__NSStackBlock__
类型
除此之外,还有三种系统级别的block类型(能在libclosure源码中看到)
_NSConcreteAutoBlock
_NSConcreteFinalizingBlock
_NSConcreteWeakBlockVariable
二、block循环引用
1.循环引用的分析
这段代码就是传说中的循环引用
,与此同时编译器也发出了警告
Capturing 'self' strongly in this block is likely to lead to a retain cycle
复制代码
那么就来分析一下循环引用的问题所在:
-
self
持有了block
-
block
持有了self
(self.name)
这样就形成了self -> block -> self
的循环引用
接下来不得不提到内存管理问题了(A引用B)
-
正常释放时:A发送dealloc信号让Bdealloc
-
循环引用时:A、B互相引用,引用计数不能为0,dealloc不会被调用
接下来就介绍一下解决循环引用的几种办法
2.循环引用的解决方法
2.1 强弱共舞
__weak typeof(self) weakSelf = self;
self.name = @"Felix";
self.block = ^{
NSLog(@"%@", weakSelf.name);
};
复制代码
使用 中介者模式 __weak typeof(self) weakSelf = self
将循环引用改为weakself -> self -> block -> weakself
表面看上去还是一个“引用圈”,但是weakself -> self
这一层是弱引用——引用计数不处理,使用weak表
管理。所以此时在页面析构时self
就能正常的调用dealloc
了
但并不是最终的解决方案,此时仍存在着问题
__weak typeof(self) weakSelf = self;
self.name = @"Felix";
self.block = ^{
dispatch_after(dispatch_time(DISPATCH_TIME_NOW, (int64_t)(3 * NSEC_PER_SEC)), dispatch_get_main_queue(), ^{
NSLog(@"%@", weakSelf.name);
});
};
复制代码
如同这种延时情况,如若调用block之后立马返回上一页进行页面释放,3秒后weakself
指向的self
已经为nil
了,此时的打印就只能打印出null
于是就有了强持有
这么一说法
__weak typeof(self) weakSelf = self;
self.name = @"Felix";
self.block = ^{
__strong typeof(weakSelf) strongSelf = weakSelf;
dispatch_after(dispatch_time(DISPATCH_TIME_NOW, (int64_t)(3 * NSEC_PER_SEC)), dispatch_get_main_queue(), ^{
NSLog(@"%@", strongSelf.name);
});
};
复制代码
再加一层临时的强持有
,此时的引用就变成了strongself -> weakself -> self -> block -> strongself
看上去又是一个循环引用,但实际上strongSelf
是个临时变量,当block作用域结束后就会释放,从而打破循环引用进行释放(让释放延后了3秒)
2.2 其他中间者模式
既然有“自动置空”,那么也可以“手动置空”
__block ViewController *vc = self;
self.name = @"Felix";
self.block = ^{
dispatch_after(dispatch_time(DISPATCH_TIME_NOW, (int64_t)(3 * NSEC_PER_SEC)), dispatch_get_main_queue(), ^{
NSLog(@"%@", vc.name);
vc = nil;
});
};
复制代码
上述代码也是使用 中介者模式 打破循环应用的——使用vc
作为中介者代替self
从而打破循环引用
此时的引用情况为vc -> self -> block -> vc
(vc在用完之后手动置空)
但是只要不调用block,仍然存在着循环应用
解决循环引用还有一种方式——不引用
self.name = @"Felix";
self.block = ^(ViewController *vc) {
dispatch_after(dispatch_time(DISPATCH_TIME_NOW, (int64_t)(3 * NSEC_PER_SEC)), dispatch_get_main_queue(), ^{
NSLog(@"%@", vc.name);
vc = nil;
});
}
复制代码
上述代码使用当前vc
作为参数传入block时拷贝一份,就不会出现持有的情况,同时还能使用self
的内存空间,能够完美避免循环引用
3.循环引用的补充说明
-
Masonry
中是否存在循环引用?
Monsary
使用的block是当做参数传递的,即便block内部持有self,设置布局的view持有block,但是block不持有view,当block执行完后就释放了,self的引用计数-1,所以block也不会持有self,所以不会导致循环引用
- [UIView animateWithDuration: animations:]中是否存在循环引用?
UIView动画
是类方法,不被self持有(即self持有了view,但view没有实例化)所以不会循环引用
- 使用Facebook的开源框架能检测是否存在循环引用
- (void)checkLeaks {
FBRetainCycleDetector *detector = [FBRetainCycleDetector new];
[detector addCandidate:self];
NSSet *retainCycles = [detector findRetainCycles];
NSLog(@"%@", retainCycles);
}
复制代码
三、block底层
1.block本质
int main(){
__block int a = 10;
void(^block)(void) = ^{
a++;
printf("Felix - %d",a);
};
block();
return 0;
}
复制代码
用clang
将上述代码输出成cpp文件来查看底层实现
clang -rewrite-objc main.c -o main.cpp
复制代码
int main(){
void(*block)(void) = ((void (*)())&__main_block_impl_0((void *)__main_block_func_0, &__main_block_desc_0_DATA));
((void (*)(__block_impl *))((__block_impl *)block)->FuncPtr)((__block_impl *)block);
return 0;
}
复制代码
- 从
main函数
中可以看到block的赋值是__main_block_impl_0
类型,它是C++中的构造函数
全局搜索__main_block_impl_0
能看到它的定义
struct __main_block_impl_0 {
struct __block_impl impl;
struct __main_block_desc_0* Desc;
__main_block_impl_0(void *fp, struct __main_block_desc_0 *desc, int flags=0) {
impl.isa = &_NSConcreteStackBlock;
impl.Flags = flags;
impl.FuncPtr = fp;
Desc = desc;
}
};
复制代码
从上述代码可以看出block的本质是个 __main_block_impl_0 的结构体对象,这就是为什么能用 %@ 打印出block的原因了
- 再来看看析构函数中所需要的函数:
fp
传递了具体的block实现__main_block_func_0
,然后保存在block结构体的impl
中
这就说明了block声明只是将block实现保存起来,具体的函数实现需要自行调用
- 当block为堆block时(外接传入变量)重新clang编译
int main(){
int a = 10;
void(^block)(void) = ^{
printf("Felix %d ", a);
};
block();
return 0;
}
复制代码
此时的block构造函数
中就会多出一个参数a
,并且在block结构体中
也会多出一个属性a
接着把目光转向__main_block_func_0
实现
-
__cself
是__main_block_impl_0
的指针,即block本身 -
int a = __cself->a
即int a = block->a
- 由于a只是个属性,所以是堆block只是值拷贝(值相同,内存地址不同)
- 这也是为什么捕获的外界变量不能直接进行操作的原因,如
a++
会报错
- 当__block修饰外界变量时
int main(){
__block int a = 10;
void(^block)(void) = ^{
printf("Felix %d ", a);
};
block();
return 0;
}
复制代码
__block
修饰的属性在底层会生成响应的结构体,保存原始变量的指针,并传递一个指针地址给block——因此是指针拷贝
2.block签名
接下来就来到libclosure源码
中仔细看一看瞧一瞧
首先来看block结构体对象Block_layout
(等同于clang编译出来的__Block_byref_a_0
)
#define BLOCK_DESCRIPTOR_1 1
struct Block_descriptor_1 {
uintptr_t reserved;
uintptr_t size;
};
#define BLOCK_DESCRIPTOR_2 1
struct Block_descriptor_2 {
// requires BLOCK_HAS_COPY_DISPOSE
BlockCopyFunction copy;
BlockDisposeFunction dispose;
};
#define BLOCK_DESCRIPTOR_3 1
struct Block_descriptor_3 {
// requires BLOCK_HAS_SIGNATURE
const char *signature;
const char *layout; // contents depend on BLOCK_HAS_EXTENDED_LAYOUT
};
struct Block_layout {
void *isa;
volatile int32_t flags; // contains ref count
int32_t reserved;
BlockInvokeFunction invoke;
struct Block_descriptor_1 *descriptor; //
// imported variables
};
复制代码
其中Block_layout
是基础的block结构空间,而部分block则拥有Block_descriptor_2
和Block_descriptor_3
结构,其中的flags
标识记录了一些信息
- 第1位:释放标记,一般常用BLOCK_NEEDS_FREE做位与操作,一同传入flags,告知该block可释放
- 第16位:存储引用计数的值,是一个可选参数
- 第24位:第16位是否有效的标志,程序根据它来决定是否增加火箭少女引用计数位的值
- 第25位:是否拥有拷贝辅助函数
- 第26位:是否拥有block析构函数
- 第27位:标志是否有垃圾回收
- 第28位:标志是否是全局block
- 第30位:与BLOCK_USE_START相对,判断当前block是否拥有一个签名,用于runtime时动态调用
但部分block则拥有Block_descriptor_2
和Block_descriptor_3
结构这句话又该怎么去理解呢?请看下面的解释
static struct Block_descriptor_2 * _Block_descriptor_2(struct Block_layout *aBlock)
{
if (! (aBlock->flags & BLOCK_HAS_COPY_DISPOSE)) return NULL;
uint8_t *desc = (uint8_t *)aBlock->descriptor;
desc += sizeof(struct Block_descriptor_1);
return (struct Block_descriptor_2 *)desc;
}
static struct Block_descriptor_3 * _Block_descriptor_3(struct Block_layout *aBlock)
{
if (! (aBlock->flags & BLOCK_HAS_SIGNATURE)) return NULL;
uint8_t *desc = (uint8_t *)aBlock->descriptor;
desc += sizeof(struct Block_descriptor_1);
if (aBlock->flags & BLOCK_HAS_COPY_DISPOSE) {
desc += sizeof(struct Block_descriptor_2);
}
return (struct Block_descriptor_3 *)desc;
}
复制代码
-
如果
aBlock->flags & BLOCK_HAS_COPY_DISPOSE
满足,则_Block_descriptor_2
存在,反之则block没有_Block_descriptor_2
这个结构-
_Block_descriptor_2
可以通过Block_descriptor_1
内存偏移得到
-
-
同理,
aBlock->flags & BLOCK_HAS_SIGNATURE
满足,则_Block_descriptor_3
存在-
_Block_descriptor_3
可以通过Block_descriptor_2
内存偏移得到
-
决定这两个结构是否存在的绝对因素其实就是Block_layout
的flags
// Values for Block_layout->flags to describe block objects
enum {
BLOCK_DEALLOCATING = (0x0001), // runtime
BLOCK_REFCOUNT_MASK = (0xfffe), // runtime
BLOCK_NEEDS_FREE = (1 << 24), // runtime
BLOCK_HAS_COPY_DISPOSE = (1 << 25), // compiler
BLOCK_HAS_CTOR = (1 << 26), // compiler: helpers have C++ code
BLOCK_IS_GC = (1 << 27), // runtime
BLOCK_IS_GLOBAL = (1 << 28), // compiler
BLOCK_USE_STRET = (1 << 29), // compiler: undefined if !BLOCK_HAS_SIGNATURE
BLOCK_HAS_SIGNATURE = (1 << 30), // compiler
BLOCK_HAS_EXTENDED_LAYOUT=(1 << 31) // compiler
};
复制代码
接下来就用汇编来看看block中的签名
- NSGlobalBlock签名(_Block_copy进入时)
- NSStackBlock签名(_Block_copy进入时)
- NSMallocBlock签名(_Block_copy返回时)
最后通过内存平移也拿到了block的签名,可以看出
- 这个block的返回值为空值
- block的签名为
@?
,代表着不明对象
3.block的copy分析
接下来就来研究下栈block
转换成到堆block
的过程——_Block_copy
void *_Block_copy(const void *arg) {
struct Block_layout *aBlock;
if (!arg) return NULL;
// The following would be better done as a switch statement
aBlock = (struct Block_layout *)arg;
if (aBlock->flags & BLOCK_NEEDS_FREE) {
// latches on high
latching_incr_int(&aBlock->flags);
return aBlock;
}
else if (aBlock->flags & BLOCK_IS_GLOBAL) {
return aBlock;
}
else {
// Its a stack block. Make a copy.
struct Block_layout *result =
(struct Block_layout *)malloc(aBlock->descriptor->size);
if (!result) return NULL;
memmove(result, aBlock, aBlock->descriptor->size); // bitcopy first
#if __has_feature(ptrauth_calls)
// Resign the invoke pointer as it uses address authentication.
result->invoke = aBlock->invoke;
#endif
// reset refcount
result->flags &= ~(BLOCK_REFCOUNT_MASK|BLOCK_DEALLOCATING); // XXX not needed
result->flags |= BLOCK_NEEDS_FREE | 2; // logical refcount 1
_Block_call_copy_helper(result, aBlock);
// Set isa last so memory analysis tools see a fully-initialized object.
result->isa = _NSConcreteMallocBlock;
return result;
}
}
复制代码
整段代码主要分成三个逻辑分支
- 通过
flags
标识位——存储引用计数的值是否有效
block的引用计数不受runtime处理的,是由自己管理的
static int32_t latching_incr_int(volatile int32_t *where) {
while (1) {
int32_t old_value = *where;
if ((old_value & BLOCK_REFCOUNT_MASK) == BLOCK_REFCOUNT_MASK) {
return BLOCK_REFCOUNT_MASK;
}
if (OSAtomicCompareAndSwapInt(old_value, old_value+2, where)) {
return old_value+2;
}
}
}
复制代码
这里可能有个疑问——为什么引用计数是 +2 而不是 +1 ?
——因为flags的第一号位置已经存储着释放标记
- 是否是全局block——是的话直接返回block
-
栈block
->堆block
的过程
- 先通过
malloc
在堆区开辟一片空间 - 再通过
memmove
将数据从栈区拷贝到堆区 -
invoke
、flags
同时进行修改 - block的isa标记成
_NSConcreteMallocBlock
4.__block的深入探究
为了更好地进行探究,我们在OC
的main文件
中进行clang编译
xcrun -sdk iphonesimulator clang -rewrite-objc main.m
复制代码
#import <UIKit/UIKit.h>
#import "AppDelegate.h"
int main(int argc, char * argv[]) {
NSString * appDelegateClassName;
@autoreleasepool {
// Setup code that might create autoreleased objects goes here.
appDelegateClassName = NSStringFromClass([AppDelegate class]);
__block NSString *name = [NSString stringWithFormat:@"Felix"];
void (^fxBlock)(void) = ^{ // block_copy
name = @"Feng Felix";
};
fxBlock();
}
return UIApplicationMain(argc, argv, nil, appDelegateClassName);
}
复制代码
4.1 第一层拷贝(block)
block中的第一层拷贝其实已经讲过了——_Block_copy
将block从栈拷贝到堆
4.2 第二层拷贝(捕获变量的内存空间)
在函数声明时会传__main_block_desc_0_DATA结构体
,在里面又会去调用__main_block_copy_0
函数,__main_block_copy_0
里面会调用_Block_object_assign
——这就是第二层拷贝的调用入口
接下来就来看看_Block_object_assign
在底层都做了什么(注意传参)
void _Block_object_assign(void *destArg, const void *object, const int flags) {
const void **dest = (const void **)destArg;
switch (os_assumes(flags & BLOCK_ALL_COPY_DISPOSE_FLAGS)) {
case BLOCK_FIELD_IS_OBJECT:
/*******
id object = ...;
[^{ object; } copy];
********/
_Block_retain_object(object);
*dest = object;
break;
case BLOCK_FIELD_IS_BLOCK:
/*******
void (^object)(void) = ...;
[^{ object; } copy];
********/
*dest = _Block_copy(object);
break;
case BLOCK_FIELD_IS_BYREF | BLOCK_FIELD_IS_WEAK:
case BLOCK_FIELD_IS_BYREF:
/*******
// copy the onstack __block container to the heap
// Note this __weak is old GC-weak/MRC-unretained.
// ARC-style __weak is handled by the copy helper directly.
__block ... x;
__weak __block ... x;
[^{ x; } copy];
********/
*dest = _Block_byref_copy(object);
break;
case BLOCK_BYREF_CALLER | BLOCK_FIELD_IS_OBJECT:
case BLOCK_BYREF_CALLER | BLOCK_FIELD_IS_BLOCK:
/*******
// copy the actual field held in the __block container
// Note this is MRC unretained __block only.
// ARC retained __block is handled by the copy helper directly.
__block id object;
__block void (^object)(void);
[^{ object; } copy];
********/
*dest = object;
break;
case BLOCK_BYREF_CALLER | BLOCK_FIELD_IS_OBJECT | BLOCK_FIELD_IS_WEAK:
case BLOCK_BYREF_CALLER | BLOCK_FIELD_IS_BLOCK | BLOCK_FIELD_IS_WEAK:
/*******
// copy the actual field held in the __block container
// Note this __weak is old GC-weak/MRC-unretained.
// ARC-style __weak is handled by the copy helper directly.
__weak __block id object;
__weak __block void (^object)(void);
[^{ object; } copy];
********/
*dest = object;
break;
default:
break;
}
}
复制代码
根据flags & BLOCK_ALL_COPY_DISPOSE_FLAGS
进到不同分支来处理捕获到的变量
枚举值 | 数值 | 含义 |
---|---|---|
BLOCK_FIELD_IS_OBJECT | 3 | 对象 |
BLOCK_FIELD_IS_BLOCK | 7 | block变量 |
BLOCK_FIELD_IS_BYREF | 8 | __block修饰的结构体 |
BLOCK_FIELD_IS_WEAK | 16 | __weak修饰的变量 |
BLOCK_BYREF_CALLER | 128 | 处理block_byref内部对象内存的时候 会加的一个额外的标记,配合上面的枚举一起使用 |
此时捕获到的变量是被__block
修饰的BLOCK_FIELD_IS_BYREF
类型,就会调用*dest = _Block_byref_copy(object);
static struct Block_byref *_Block_byref_copy(const void *arg) {
// 临时变量的保存
struct Block_byref *src = (struct Block_byref *)arg;
if ((src->forwarding->flags & BLOCK_REFCOUNT_MASK) == 0) {
// src points to stack
// 用原目标的大小在堆区生成一个Block_byref
struct Block_byref *copy = (struct Block_byref *)malloc(src->size);
copy->isa = NULL;
// byref value 4 is logical refcount of 2: one for caller, one for stack
copy->flags = src->flags | BLOCK_BYREF_NEEDS_FREE | 4;
// 原来的区域和新的区域都指向同一个对象,使得block具备了修改能力
copy->forwarding = copy; // patch heap copy to point to itself
src->forwarding = copy; // patch stack to point to heap copy
copy->size = src->size;
if (src->flags & BLOCK_BYREF_HAS_COPY_DISPOSE) {
// Trust copy helper to copy everything of interest
// If more than one field shows up in a byref block this is wrong XXX
struct Block_byref_2 *src2 = (struct Block_byref_2 *)(src+1);
struct Block_byref_2 *copy2 = (struct Block_byref_2 *)(copy+1);
copy2->byref_keep = src2->byref_keep;
copy2->byref_destroy = src2->byref_destroy;
if (src->flags & BLOCK_BYREF_LAYOUT_EXTENDED) {
struct Block_byref_3 *src3 = (struct Block_byref_3 *)(src2+1);
struct Block_byref_3 *copy3 = (struct Block_byref_3*)(copy2+1);
copy3->layout = src3->layout;
}
(*src2->byref_keep)(copy, src);
}
else {
// Bitwise copy.
// This copy includes Block_byref_3, if any.
memmove(copy+1, src+1, src->size - sizeof(*src));
}
}
// already copied to heap
else if ((src->forwarding->flags & BLOCK_BYREF_NEEDS_FREE) == BLOCK_BYREF_NEEDS_FREE) {
latching_incr_int(&src->forwarding->flags);
}
return src->forwarding;
}
复制代码
- 用原目标
name
的大小在堆区生成一个Block_byref -
copy->forwarding = copy; & src->forwarding = copy;
——原来的区域和新的区域都指向同一个对象,使得block具备了修改能力 -
(*src2->byref_keep)(copy, src)
开始第三层拷贝
4.3 第三层拷贝(拷贝对象)
(*src2->byref_keep)(copy, src)
跟进去会来到Block_byref
结构来,而byref_keep
是Block_byref
的第5个属性
struct Block_byref {
void *isa;
struct Block_byref *forwarding;
volatile int32_t flags; // contains ref count
uint32_t size;
};
struct Block_byref_2 {
// requires BLOCK_BYREF_HAS_COPY_DISPOSE
BlockByrefKeepFunction byref_keep;
BlockByrefDestroyFunction byref_destroy;
};
struct Block_byref_3 {
// requires BLOCK_BYREF_LAYOUT_EXTENDED
const char *layout;
};
复制代码
__block
修饰的变量在底层其实调用了如下的构造方法——此时的第5位就等于byref_keep
,所以在第二层拷贝时会调用__Block_byref_id_object_copy_131
static void __Block_byref_id_object_copy_131(void *dst, void *src) {
_Block_object_assign((char*)dst + 40, *(void * *) ((char*)src + 40), 131);
}
static void __Block_byref_id_object_dispose_131(void *src) {
_Block_object_dispose(*(void * *) ((char*)src + 40), 131);
}
复制代码
第五个函数会去调用_Block_object_assign
函数
这个(char*)dst + 40
看着觉得好莫名其妙啊...其实看到__Block_byref_name_0
就顿悟了,刚好取得变量name
对象
struct __Block_byref_name_0 {
void *__isa;
__Block_byref_name_0 *__forwarding;
int __flags;
int __size;
void (*__Block_byref_id_object_copy)(void*, void*);
void (*__Block_byref_id_object_dispose)(void*);
NSString *name;
};
复制代码
而_Block_object_assign
在对BLOCK_FIELD_IS_OBJECT
情况时会做出如下操作:
case BLOCK_FIELD_IS_OBJECT:
/*******
id object = ...;
[^{ object; } copy];
********/
_Block_retain_object(object);
*dest = object;
break;
复制代码
-
_Block_retain_object
是个空函数,因为block捕获的外接变量由ARC自动管理 - 捕获到
name
进行拷贝
4.4 _Block_object_dispose
看完了三层拷贝,再来看一下释放函数_Block_object_dispose
void _Block_object_dispose(const void *object, const int flags) {
switch (os_assumes(flags & BLOCK_ALL_COPY_DISPOSE_FLAGS)) {
case BLOCK_FIELD_IS_BYREF | BLOCK_FIELD_IS_WEAK:
case BLOCK_FIELD_IS_BYREF:
// get rid of the __block data structure held in a Block
_Block_byref_release(object);
break;
case BLOCK_FIELD_IS_BLOCK:
_Block_release(object);
break;
case BLOCK_FIELD_IS_OBJECT:
_Block_release_object(object);
break;
case BLOCK_BYREF_CALLER | BLOCK_FIELD_IS_OBJECT:
case BLOCK_BYREF_CALLER | BLOCK_FIELD_IS_BLOCK:
case BLOCK_BYREF_CALLER | BLOCK_FIELD_IS_OBJECT | BLOCK_FIELD_IS_WEAK:
case BLOCK_BYREF_CALLER | BLOCK_FIELD_IS_BLOCK | BLOCK_FIELD_IS_WEAK:
break;
default:
break;
}
}
static void _Block_byref_release(const void *arg) {
struct Block_byref *byref = (struct Block_byref *)arg;
// dereference the forwarding pointer since the compiler isn't doing this anymore (ever?)
byref = byref->forwarding;
if (byref->flags & BLOCK_BYREF_NEEDS_FREE) {
int32_t refcount = byref->flags & BLOCK_REFCOUNT_MASK;
os_assert(refcount);
if (latching_decr_int_should_deallocate(&byref->flags)) {
if (byref->flags & BLOCK_BYREF_HAS_COPY_DISPOSE) {
struct Block_byref_2 *byref2 = (struct Block_byref_2 *)(byref+1);
(*byref2->byref_destroy)(byref);
}
free(byref);
}
}
}
复制代码
- 如果是释放对象就什么也不做(自动释放)
- 如果是
__block
修饰,就将指向指回原来的区域并使用free
释放
5.总结
- block的本质是个
__main_block_impl_0
的结构体对象,所以能用%@
打印 - block声明只是将block实现保存起来,具体的函数实现需要
自行调用
- block捕获外界变量时block结构体会
自动生成一个属性
来保存变量 -
__block
修饰的属性在底层会生成响应的结构体,保存原始变量的指针,并传递一个指针地址
给block - block中有三层拷贝:拷贝block、拷贝捕获变量的内存地址、拷贝对象
写在后面
block还有hook
一块也是需要去学习了解的
小小的block也是有很多底层知识需要研究的,越学会发现自己越渺小,其实不然,只是你的视角开阔了,正是如此才会进步
以下文章可以做一个学习参考:
GCD面试要点
block面试要点
Runtime面试要点
RunLoop面试要点
内存管理面试要点
MVC、MVVM面试要点
网络性能优化面试要点
网络编程面试要点
KVC&KVO面试要点
数据存储面试要点
混编技术面试要点
设计模式面试要点
UI面试要点