DB、ETL、DW、OLAP、DM、BI

DB、ETL、DW、OLAP、DM、BI关系结构图

(1)DB/Database/数据库——这里一般指的就是OLTP数据库,在线事物数据库,用来支持生产的,比如超市的买卖系统。DB保留的是数据信息的最新状态,只有一个状态!比如,每天早上起床洗脸照镜子,看到的就是当时的状态,至于之前的每天的状态,不会出现的你的眼前,这个眼前就是db。

(2)DW/Data Warehouse/数据仓库——这里保存的是DB中的不同时间点的状态,比如,每天早上洗完照镜子时,都拍一张照片,天天这样,这些照片放入到一个相册中,之后就可以查看每一天的状态了,这个相册就是数据仓库,他保存的是数据在不同时间点的状态,对同一个数据信息,保留不同时间点的状态,就便于我们做统计分析了。

(3)ETL/Extraction-Transformation-Loading——用于完成DB到DW的数据转存,它将DB中的某一个时间点的状态,“抽取”出来,根据DW的存储模型要求,“转换”一下数据格式,然后再“加载”到DW的一个过程,这里需要强调的是,DB的模型是ER模型,遵从范式化设计原则,而DW的数据模型是雪花型结构或者星型结构,用的是面向主题,面向问题的设计思路,所以DB和DW的模型结构不同,需要进行转换。

(4)OLAP——在线分析系统,简单说就是报表系统,销售报表,统计报表,等等,这个大家都熟悉,当然,OLAP的统计要更复杂更丰富一些,比如切面,钻取等等。

(5)DM/Data Mining/数据挖掘——这个挖掘,不是简单的统计了,他是根据概率论的或者其他的统计学原理,将DW中的大数据量进行分析,找出我们不能直观发现的规律,比如,如果我们每天早上照相,量身材的时候,还记录下头一天吃的东西,黄瓜,猪腿,烤鸭,以及心情,如果记录上10年,形成了3650天的相貌和饮食心情的数据,我们每个人都记录,有20万人记录了,那么,我们也许通过这些记录,可以分析出,身材相貌和饮食的客观规律;再说一个典型的实例,就是英国的超市,在积累了大量数据之后,对数据分析挖掘之后,得到了一个规律:将小孩的尿布和啤酒放在一起,销量会更好——业务专家在得到该结论之后,仔细分析,知道了原因,因为英国男人喜欢看足球的多,老婆把小孩介绍男人看管,小孩尿尿需要尿布,而男人看足球喜欢喝酒,所以两样商品有密切的关系,放在一起销售会更好!

(6)BI/Business Intelligence/商业智能——领导,决策者,在获取了OLAP的统计信息,和DM得到的科学规律之后,对生产进行适当的调整,比如,命令超市人员将啤酒喝尿布放在一起销售,这就反作用于DB修改存货数据了——这就是整个BI的作用!

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,293评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,604评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,958评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,729评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,719评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,630评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,000评论 3 397
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,665评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,909评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,646评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,726评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,400评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,986评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,959评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,197评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,996评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,481评论 2 342

推荐阅读更多精彩内容