Redis有序集合

Redis是一个高性能的key-value数据库,处理数据的效率高。Redis的优点有以下几方面:

  1. 性能极高:Redis的读取速度是11万次/s,写的速度是8.1万/s。
  2. 数据类型丰富:Redis相比其他key-value数据库,能够支持很多丰富的数据结构如Strings、Hashes、Lists、Sets和Sorted Sets。
  3. 原子性:Redis支持事务,能够对所有操作进行原子操作。
  4. 数据持久化:Redis支持数据的持久化,可以将内存中的数据保存到磁盘中,避免丢失。

Sorted Sets与Sets类似之处是它不允许有重复的成员存在,不同的是每个元素都会关联一个double类型的分数。通过分数,Redis可以对集合中的成员进行从小到大的排序。Sorted Set的成员是唯一的,但是分数却是可以重复的,集合是通过哈希表实现的,因此,对Sorted Set进行添加、删除和查找时的时间复杂度都是O(1)。Sorted Sets中最大的成员数为2^32-1(4294967295,差不多40多亿),score是一个64位浮点类型,范围在-9007199254740992到9007199254740992之间。

有序集合的value可作为时间戳,常用于处理延迟任务(比如多长时间之后数据失效或者触发什么事件)

由于key是唯一的,而每个用户的userId都是唯一的,因此可以用userId作为key来标识,但因为Redis不止一个工程用到,可能其他工程也共用该Redis集群,因此将使用“expose:userId”作为key。因为只保留用户最近两周的曝光数据,所以需要定时去删除两周前的数据,如果当前时间戳作为score,可以调用Redis的zremrangebyscore命令对两周前的数据进行清理。value结构保存用户的曝光具体数据,如内容的id,内容的类型,曝光的时间戳,手机的型号等信息,由于value是字符串类型,因此将这些数据转化成json格式封装

redis有序集合命令可参考: Redis 命令参考

说一下Redis为什么这么快?

Redis本质上是一个Server,服务器编程的几点常识:

  1. 所有命令和请求都有网络开销,都有消耗在网络协议上面(RTT,Round-Trip Time)

  2. 当读写(或传输)的数据较多时(比如大对象),带宽就容易成为瓶颈。

再说下Server慢的几个常见因素:

  1. 服务端线程数量过多,占据大量资源,频繁切换上下文

  2. 锁的滥用,大量CPU用在线程调度上

  3. 非必要的内存拷贝

Redis避免了以上方面的问题:

  1. 单进程单线程,无锁,串行操作,没有多线程切换和竞争。

  2. 数据在内存中(也可持久化),操作迅速

  3. 非阻塞IO:采用了epoll + 事件框架。epoll中的读、写、关闭、连接等动作都转化成了事件,然后利用epoll的多路复用特性,不在IO上浪费时间。

Redis在CPU,内存和IO方面都大大提升了效率。

最后再说一个使用的redis命令:

-x 表示从标准输入(stdin)读取数据

cat file.txt | redis-cli -p 6379 -x set key 
redis-cli -p 6379 -x set key 0<file.txt

以上两种方式结果相同。更多命令选项请参考redis-cli --help.

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,921评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,635评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,393评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,836评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,833评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,685评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,043评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,694评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 42,671评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,670评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,779评论 1 332
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,424评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,027评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,984评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,214评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,108评论 2 351
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,517评论 2 343

推荐阅读更多精彩内容