Tensorflow深度学习的日常——day-1

序言:俗话说好记性不如烂笔头,在我们学习的过程中,特别是搞程序这一块的,每天的学习的东西有很多,光靠我们的大脑来记忆,那是不怎么可能的,如果可以的话,那你应该去参加最强大脑了。因此我们可以每天在学习完以后,自己把知识点梳理一下,然后写成一个笔记,这样我们如果在以后的工作学习中用到这方面的知识我们也可以通过自己的学习笔记来快速的掌握,我之前也写过文章,但是由于别的事情就没写了,我因此在这立下一个flag,只要自己每天学习到的东西,都会把它整理成文章。在之后我也会整理关于python基础,爬虫,数据分析的几个重要的库(numpy,pandas,scipy,matplotlib)中自己学习的总结。

坚持下去,你发现学习会使你快乐。


Tensorflow中文社区

1.什么是tensorflow?

TensorFlow™ 是一个采用数据流图(data flow graphs),用于数值计算的开源软件库。节点(Nodes)在图中表示数学操作,图中的线(edges)则表示在节点间相互联系的多维数据数组,即张量(tensor)。它灵活的架构让你可以在多种平台上展开计算,例如台式计算机中的一个或多个CPU(或GPU),服务器,移动设备等等。TensorFlow 最初由Google大脑小组(隶属于Google机器智能研究机构)的研究员和工程师们开发出来,用于机器学习和深度神经网络方面的研究,但这个系统的通用性使其也可广泛用于其他计算领域。


2.基础知识

(1)张量(Tensor)

TensorFlow 内部的计算都是基于张量的,因此我们有必要先对张量有个认识。张量是在我们熟悉的标量、向量之上定义的,详细的定义比较复杂,我们可以先简单的将它理解为一个多维数组:

我们可以通过代码来看一下Tensor

如果我们需要打印出它的值,需要经过Session运行一下(在后面的例子中有) 

(2)数据流图在TensorFlow中文社区的首页就有.

(3)Session

TensorFlow 底层是使用C++实现,这样可以保证计算效率,并使用 tf.Session类来连接客户端程序与C++运行时。上层的Python、Java等代码用来设计、定义模型,构建的Graph,最后通过tf.Session.run()方法传递给底层执行。

(4)构建计算图(这里我只举一个简单的例子)

Tensor 即可以表示输入、输出的端点,还可以表示计算单元,如下的代码创建了对两个 Tensor 执行 + 操作的 Tensor:

输出结果为:


下面就要进入我今天学习的重点了:利用TensorFlow进行机器学习的一个简单实例

我就直接先上代码:

具体的解释我都写在了代码里了,下面我们看一下运行的结果:

由上面的结果我们可以看到Weights记过多次的训练从0.6462到0.10000,biases从-0.020到0.29999,从这些数据上可以看出,Weights也越来越接近0.3,biases也越来越接近0.1。我的原始函数是y = 0.1x + 0.3 ,现在计算机通过多次学习,最后得到的函数也无限接近这个了。

上面的例子我也可通过一个通俗的例子来说明:就比如我们现在要通过机器学习来使计算机能够自己识别猫,计算机在学习次数少的前提下,会认不出这个是毛,结果就是输出一只狗。但是在经过上万次的学习,最后得到的参数无限接近猫的参数,这样计算机就会输出猫了。


加油,不仅仅为了自己!!

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,053评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,527评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,779评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,685评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,699评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,609评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,989评论 3 396
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,654评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,890评论 1 298
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,634评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,716评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,394评论 4 319
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,976评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,950评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,191评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,849评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,458评论 2 342

推荐阅读更多精彩内容