从粗到细 实践中,一般先进行初步范围搜索,然后根据好结果出现的地方,再缩小范围进行更精细的搜索。 先参考相关论文,以论文中给出的参数作为初始参数。 如果找不到参考,那么只能自...
从粗到细 实践中,一般先进行初步范围搜索,然后根据好结果出现的地方,再缩小范围进行更精细的搜索。 先参考相关论文,以论文中给出的参数作为初始参数。 如果找不到参考,那么只能自...
所谓“知识精炼”我的理解就是将一个训练好的复杂模型的“知识”迁移到一个结构更为简单的网络中,或者通过简单的网络去学习复杂模型中“知识”或模仿复杂模型的行为。当然“知识”的定义...
网络量化作为一种重要的模型压缩方法,大致可以分为两类: 直接降低参数精度典型的工作包括二值网络,三值网络以及XNOR-Net. HORQ和Network Sketching相...
Approach We propose a simple two-step approach for speeding up convolution layers withi...
Approach Matrix Decomposition Higher Order Tensor Approximations Monochromatic Convolut...
Approach Han song recently propose to compress DNN by deleting unimportant parameters a...
Approach Experiment References:Speeding up Convolutional Neural Networks with Low Rank ...
Approach The optimization target of learning the filter-wise and channel-wise structure...
Approach Fixed-point Factorization Full-precision Weights Recovery The quantized weight...
Approach Firstly, we introduce an efficient test-phase computation process with the net...
Approach Approximating the Filters Speeding-up the Sketch Model Experiment References:N...
Approach We present INQ which incorporates three interdependent operations: weight part...
Approach where p(w) is the prior over w and p(D|w) is the model likelihood. After re-tr...
Approach We introduce “deep compression”, a three stage pipeline: pruning, trained quan...
Approach HashedNets uses a low-cost hash function to randomly group connection weights ...
Approach Experiment References:Performance Guaranteed Network Acceleration via High-Ord...
Approach We propose two efficient approximations to standard convolutional neural netwo...
一直以来,网络剪枝都是模型压缩中的重要方法。按照被剪对象的粒度来分,大致可以分为三类: 针对权重剪枝,最具代表性的工作是韩松发表在NIP'15上的文章 “Learning b...
Approach Han song recently propose to compress DNN by deleting unimportant parameters a...
Approach The proposed scheme for pruning consists of the following steps: Fine-tune the...