逆、伪逆、左右逆、最小二乘、投影矩阵

转自:(数学概念)矩阵的逆、伪逆、左右逆,最小二乘,投影矩阵 - AndyJee - 博客园

主要内容:

矩阵的逆、伪逆、左右逆

矩阵的左逆与最小二乘

左右逆与投影矩阵

一、矩阵的逆、伪逆、左右逆

1、矩阵的逆

定义:

设A是数域上的一个n阶方阵,若在相同数域上存在另一个n阶矩阵B,使得: AB=BA=I。 则我们称B是A的逆矩阵,而A则被称为可逆矩阵。

可逆条件:

A是可逆矩阵的充分必要条件是,即可逆矩阵就是非奇异矩阵。(当

时,A称为奇异矩阵)

性质:

矩阵A可逆的充要条件是A的行列式不等于0。

可逆矩阵一定是方阵。

如果矩阵A是可逆的,A的逆矩阵是唯一的。

可逆矩阵也被称为非奇异矩阵、满秩矩阵。

两个可逆矩阵的乘积依然可逆。

可逆矩阵的转置矩阵也可逆。

矩阵可逆当且仅当它是满秩矩阵。

求逆方法:

伴随矩阵法、初等变换法

2、矩阵的伪逆和左右逆

伪逆矩阵:

伪逆矩阵是逆矩阵的广义形式。由于奇异矩阵或非方阵的矩阵不存在逆矩阵,但在matlab里可以用函数pinv(A)求其伪逆矩阵。基本语法为X=pinv(A),X=pinv(A,tol),其中tol为误差,pinv为pseudo-inverse的缩写:max(size(A))*norm(A)*eps。函数返回一个与A的转置矩阵A' 同型的矩阵X,并且满足:AXA=A,XAX=X.此时,称矩阵X为矩阵A的伪逆,也称为广义逆矩阵。pinv(A)具有inv(A)的部分特性,但不与inv(A)完全等同。  如果A为非奇异方阵,pinv(A)=inv(A),但却会耗费大量的计算时间,相比较而言,inv(A)花费更少的时间。

伪逆矩阵求法:

A 为m*n矩阵,r代表矩阵的秩:

若矩阵A是方阵,且|A|!=0,则存在AA-1=E;

若A不是方阵,或者|A|=0,那么只能求A的伪逆,所谓伪逆是通过SVD计算出来的;

pinv(A)表示A是伪逆:

如果A列满秩,列向量线性无关,r=n,Ax=b为超定方程组,存在0个或1个解,那么

,因为

,因此也称为左逆;

如果A行满秩,行向量线性无关,Ax=b为欠定方程组,存在0个或无穷个解,那么

,因为

,因此也称为右逆;

如果秩亏损,那么只好先做奇异值分解

,U,V是正交阵,D是对角阵;然后取对角阵S,如果D(i,i)=0,那么S(i,i)=0,如果D(i,i)<>0,那么S(i,i)=1/D(i,i)。于是

二、矩阵的左逆与最小二乘

关于最小二乘可以参考:最小二乘的几何意义及投影矩阵http://www.cnblogs.com/AndyJee/p/5053354.html

其实,最小二乘就是一个超定方程组的求解问题,根据上述的了解,超定方程组的求解方法之一就是通过求伪逆的形式,具体来说就是求左逆。即:

最小二乘也可以从几何的角度来考虑,那就是下面要说的投影矩阵。

三、左右逆与投影矩阵

左逆中,

,如果将左逆写在A右边将得不到单位矩阵了,那么

是什么?是在A矩阵列空间(A矩阵各列张成的子空间)投影的投影矩阵,它会尽量靠近单位矩阵,一个投影矩阵很想成为单位矩阵,但不可能做到。

右逆中,

,如果将右逆写在A左边也不是单位矩阵了,那

是什么?是在A矩阵行空间(A矩阵各行张成的子空间)投影的投影矩阵。

四、参考文章

http://baike.baidu.com/link?url=whnNGl6wlBJ7bIzn-ldxZ3KfXj03WlXxuJvLw2VPLcCjLvFtSU_7csPUyNQ57cMzk9zz-y6sG_7hrt88NHcg2a

http://baike.baidu.com/link?url=9BBn2Hc2IgUjr2bwr8CGOFvNRfSWZB3AW6_p5DjTxY74OtZJJYvXIMQPmQ3zDpDsX36HLkEbeskvVczEruqHFa

http://shijuanfeng.blogbus.com/logs/206966888.html

http://www.blogbus.com/shijuanfeng-logs/238839798.html

http://blog.sina.com.cn/s/blog_438e26440102vsm8.html

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,482评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,377评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,762评论 0 342
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,273评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,289评论 5 373
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,046评论 1 285
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,351评论 3 400
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,988评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,476评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,948评论 2 324
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,064评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,712评论 4 323
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,261评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,264评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,486评论 1 262
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,511评论 2 354
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,802评论 2 345

推荐阅读更多精彩内容