使用Python进行聚类

微信公众号:岭南见闻
关注可了解更多的数据处理技巧。问题或建议,请公众号留言;
如果你觉得文章对你有帮助,欢迎赞赏

导入数据,进行聚类

from sklearn.datasets import load_iris
from sklearn.preprocessing import MinMaxScaler
from sklearn.cluster import KMeans
import pandas as pd
iris = load_iris()
iris_data = iris['data'##提取数据集中的特征

kmeans聚类

iris_target = iris['target'] ## 提取数据集中的标签
iris_names = iris['feature_names'] ### 提取特征名
scale = MinMaxScaler().fit(iris_data)## 训练规则
iris_dataScale = scale.transform(iris_data) ## 应用规则
kmeans = KMeans(n_clusters = 3,
    random_state=123).fit(iris_dataScale) ##构建并训练模型
print('构建的K-Means模型为:\n',kmeans)
result = kmeans.predict([[1.5,1.5,1.5,1.5]])
print('花瓣花萼长度宽度全为1.5的鸢尾花预测类别为:', result[0])
print('聚类结果为:', kmeans.labels_)

降维后可视化

from sklearn.manifold import TSNE
import matplotlib.pyplot as plt
##使用TSNE进行数据降维,降成两维
tsne = TSNE(n_components=2,init='random',
    random_state=177).fit(iris_data)
df=pd.DataFrame(tsne.embedding_) ##将原始数据转换为DataFrame
df['labels'] = kmeans.labels_ ##将聚类结果存储进df数据表
##提取不同标签的数据
df1 = df[df['labels']==0]
df2 = df[df['labels']==1
df3 = df[df['labels']==2
## 绘制图形
fig = plt.figure(figsize=(9,6)) ##设定空白画布,并制定大小
##用不同的颜色表示不同数据
plt.plot(df1[0],df1[1],'bo',df2[0],df2[1],'r*',
    df3[0],df3[1],'gD')
plt.show() ##显示图片

结果为:

聚类结果

FMI评价分值

from sklearn.metrics import fowlkes_mallows_score
for i in range(2,7):
    ##构建并训练模型
    kmeans = KMeans(n_clusters = i,random_state=123).fit(iris_data)
    score = fowlkes_mallows_score(iris_target,kmeans.labels_)
    print('iris数据聚%d类FMI评价分值为:%f' %(i,score))

silhouette_score评分值

from sklearn.metrics import silhouette_score
import matplotlib.pyplot as plt
silhouettteScore = []
for i in range(2,15):
    ##构建并训练模型
    kmeans = KMeans(n_clusters = i,random_state=123).fit(iris_data)
    score = silhouette_score(iris_data,kmeans.labels_)
    silhouettteScore.append(score)
plt.figure(figsize=(10,6))
plt.plot(range(2,15),silhouettteScore,linewidth=1.5, linestyle="-")
plt.show()

calinski_harabaz指数

from sklearn.metrics import calinski_harabaz_score
for i in range(2,7):
    ##构建并训练模型
    kmeans = KMeans(n_clusters = i,random_state=123).fit(iris_data)
    score = calinski_harabaz_score(iris_data,kmeans.labels_)
    print('iris数据聚%d类calinski_harabaz指数为:%f'%(i,score))
#读取数据,进行标准化
from sklearn.preprocessing import StandardScaler
from sklearn.cluster import KMeans
seeds = pd.read_csv('D:/seeds_dataset.txt',sep = '\t')
print('数据集形状为:', seeds.shape)
## 处理数据
seeds_data = seeds.iloc[:,:7].values
seeds_target = seeds.iloc[:,7].values
sees_names = seeds.columns[:7]
stdScale = StandardScaler().fit(seeds_data)
seeds_dataScale = stdScale.transform(seeds_data)

构建并训练模型

kmeans = KMeans(n_clusters = 3,random_state=42).fit(seeds_data)
print('构建的KM-eans模型为:\n',kmeans)
kmeans.labels_

结果为:
聚类结果为: [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 1 1 1 1 1 1 1 1 1 1 1 1 1 0 2 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
 2 2 2 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0 2 0 0 0 0 2 0 0 0 0
 0 0 2 0 0 0 0 0 2 0 2 0 2 0 0 2 2 0 0 0 0 0 2 2 0 0 0 2 0 0 0 2 0 0 0 2 0
 0 2]

calinski_harabaz指数

from sklearn.metrics import calinski_harabaz_score
for i in range(2,7):
    ##构建并训练模型
    kmeans = KMeans(n_clusters = i,random_state=12).fit(seeds_data)
    score = calinski_harabaz_score(seeds_data,kmeans.labels_)
    print('seeds数据聚%d类calinski_harabaz指数为:%f'%(i,score))

进行可视化

from sklearn.manifold import TSNE
import matplotlib.pyplot as plt
##使用TSNE进行数据降维,降成两维
tsne = TSNE(n_components=2,init='random',
    random_state=177).fit(seeds_data)
df=pd.DataFrame(tsne.embedding_) ##将原始数据转换为DataFrame
df['labels'] = kmeans.labels_ ##将聚类结果存储进df数据表
df['labels'].value_counts()
df0 = df[df['labels']==0]
df1 = df[df['labels']==1
df2 = df[df['labels']==2
df3 = df[df['labels']==3
df4 = df[df['labels']==4
df5 = df[df['labels']==5
plt.plot(df0[0],df0[1],'go',df1[0],df1[1],'bo',df2[0],df2[1],'r*',
    df3[0],df3[1],'kD',  df4[0],df4[1],'cD',  df5[0],df5[1],'mD')
plt.plot(df0[0],df0[1],'go',df1[0],df1[1],'bo',df2[0],df2[1],'r*')#,
    #df3[0],df3[1],'kD',  df4[0],df4[1],'cD',  df5[0],df5[1],'mD')

结果为:

聚为5类
聚为3类


©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,732评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,496评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,264评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,807评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,806评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,675评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,029评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,683评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 41,704评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,666评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,773评论 1 332
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,413评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,016评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,978评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,204评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,083评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,503评论 2 343

推荐阅读更多精彩内容